Bruce Hayes Dept. of Linguistics UCLA

Comparative Phonotactics

TWO KINDS OF PHONOTACTICS

1. Absolute phonotactics

- What is the phonological well-formedness of a particular word?
- How is it learned, in the absence of negative evidence?
- Hayes and Wilson (2008) suggested both a grammar framework and a learning system.
 - Framework: the maxent variant (Goldwater and Johnson 2003) of harmonic grammar (Legendre et al. 1990), with the overall constraint-based architecture borrowed from Optimality Theory (Prince and Smolensky 1993)
 - An algorithm selects phonological constraints and weights them so as to

 maximize the predicted probability of the set of existing words ...
 - ... against a backdrop of all possible strings.
 - > To some extent, this succeeds in matching linguists' phonotactic descriptions and human phonotactic intuitions.

2. Comparative phonotactics

- Assume two populations of strings, A and B.
- Assume the same maxent framework (constraints, weights, etc.)
- Seek a grammar whose output probabilities accurately predict whether any given string will belong to set A or set B.
- To do this, the constraints must be comparative make distinctions between the A and B populations.
- Is comparative phonotactics a useful idea for phonology or phonological learnability?

3. Uses of comparative phonotactics — cases I'll cover

- Analysis of **vocabulary strata**
 - ➢ the Latinate stratum of English
- Discovery of environments for phonological alternations.
 including: a way to learn (some) opaque phonology
- Discovery of product-oriented generalizations
 - English irregular past tenses

PRACTICAL PRELIMINARIES: HOW I DID THE ANALYSES

4. Data

- All data from English; I used my edited version of the online Carnegie-Mellon Pronouncing Dictionary;¹ transcriptions fixed and all "Level II" forms (Kiparsky 1982) removed.
- The corpus was variously divided into two target populations, as described below.

5. Constraints of the grammar

- I created constraints by hand:
 - ➢ from the research literature
 - by scrutinizing comparative populations of all segment unigrams, bigrams, trigrams.
- I used simple search software¹ to assess constraint violations for all words.
- I added and subtracted constraints for my grammars-in-progress, guided by the Akaike Information Criterion.

6. Implementing the maxent grammars

- No need for custom software as in Hayes/Wilson (2008)
- Maxent with just two candidates (population A, population B) is a notational variant of **logistic regression**, a standard technique of statistical analysis
- I used the *bayesglm*() function of the *arm* package (Gelman et al. 2008, 2009) of the R statistics program (R Development Core Team 2007).

7. Using logistic regression for phonology is not very original!

- Sociolinguists have been using this effective technique for decades, notably with the "Varbrul" program (Cedergren et al. 1974).
- They use it to predict whether an optional rule will apply.
- Here I adopt constraint-based phonology, and seek to show it's useful for the purposes given in (3).

LEXICAL STRATA

8. The Lexical strata hypothesis

- Chomsky and Halle (1968, 373)² proposed that languages with heavy admixtures of loanwords develop **synchronically arbitrary lexical strata** groupings of vocabulary that:
 - have a purely diachronic origin (native vs. adapted foreign words)

 $^{^1\,}www.linguistics.ucla.edu/people/hayes/EnglishPhonologySearch$

² A tiny sampling of other work: McCawley (1968), Ito and Mester (1995), Moretone and Amano (1999)

- > are nevertheless apparent to native speakers as a synchronic phenomenon
- In English the strata are thought to be **Native** and **Learned/Latinate**, perhaps with a Greek subdivision of the latter.

9. I think strata are real

- As a native speaker I feel I have a strong sense of the "Latinity" of English words, even though I know no Latin.
- This sense is gradient:
 - very Latinate: protectionism, veterinarian, sexuality, vaporization, industrialization
 - Not Latinate at all: *warmth, fresh, swath, shove, pooch, yank, beige, snot*
 - > Fairly Latinate: *palate*, *oblique*, *motor*, *postal*, *suitor*
 - > See analysis below, which predicts these distinctions.

10. A research gap?

• To my knowledge phonologists have not attempted to define lexical strata operationally, or establish how they might be learned.³

11. What could constitute the language learner's evidence for strata?

- Morpheme cooccurrence: if you have *-ation*, then you likely have *con-*. (49/613, in my data)
- Morphophonemics: Latinate words undergo different phonological alternation types (*SPE*)
- Phonotactics: Latinate and native words are phonotactically different.
 - \blacktriangleright This is just what Ito and Mester (1995) proposed re. the strata of Japanese.

12. Where does the native speaker's sense of strata come from? A proposal

- They internalize a contrastive phonotactics
 - > Population A = native
 - \blacktriangleright Population B = Latinate
- The contrasting strata are **bootstrapped** in some way, building up from initially simple information, making use of morphology.
- I'll cover these aspects in turn first setting up a grammar from an artificial starting point, then suggesting how it might be bootstrapped.

13. Getting started: an operational definition of Latinity

• Any word of at least seven letters ending in one of these suffixes:⁴

³ Just before getting on the plane I noticed Christiansen and Monaghan (2006), which uses what look rather like constraints to distinguish nouns and verb.

⁴ I also required that there be a stem syllable, so that e.g. *station* did not qualify.

-able, -acy, -al, -ance, -ancy, -ant, -ary, -ate, -ated, -ation, -ator, -atory, -ence, -ency, -ent, -graphy, -ia, -iac, -ian, -ible, -ic, -ical, -ician, -ific, -ify, -ine, -ism, -ist, -ity, -ium, -ive, -ize, -ular, -logy, -or, -ory, -ous, -sis, -tion, -ure, -us

• Looking over the data, this seems not too bad to me as an ad hoc way of identifying words that seem Latinate.

14. Constraints I: those that penalize Latinity

- Latin had rather stricter phonotactics than English, lacking:
 - Palato-alveolars /∫, ʒ, tʒ, dʒ/. These arose later in English by alveolar palatalization, but only in "ambisyllabic" positions (*nation*, *vision*, *natural*, *gradual*).
 - Initial [sn] (a sound change had turned these all to [n]).
 - ➢ No [f] before obstruents ([ft] common in native words)
- Various English sounds just happen not to be the way that Latin sounds normally get rendered; e.g. [u], [au].
- The Latin sounds were transmitted to English in particular ways.
 - [w] is rendered as such only in the clusters [kw] and [gw]; else it appears as [v]; so [w] is missing in other positions.
 - [k, g] undergo Velar Softening to [s, dʒ] before (what used to be) nonlow front vowels ([a1, 1, i, ε]).
 - > Palatal glide [j] is rendered as [dʒ] (except in the diphthong [ju]).
 - > u is [A] before nonfinal coda consonants, else [u] after coronals, else [ju].
- Some English-based phonotactics, like *V: before a nonfinal coda consonant, are obeyed with greater strictness in the Latinate vocabulary.
- It's straightforward to set up constraints based on these factors; e.g. *LATINATE IF [sn

15. Constraints II: those that penalize nativeness

- Crudely: just plain length; Latinate words are longer; in our culture we say "long words" when we difficult, rare, learned words.
- Some sound sequences are abundant in Latinate words and not in native words. They sound quite Latinate to me: [Vp₅V], [Vk₅V], stressless [iə], [mn]
- Even certain individual phonemes are strongly overrepresented in Latinate words: [n], [t], [v]

16. The full grammar I set up: Constraints and weights

Prefer Native		Prefer Latinate	
INITIAL [sn]	11.84	STRESSLESSVOWEL	0.12
MONOSYLLABIC	6.47	[n]	0.34
PALATOALVEOLAR COda	4.08	$\mathbf{[v]}$	0.64

Initial [ʃ]	3.91	[t]	0.84
ALVEOLARSTOP [1]	2.60	[mn]	1.15
[ft]	1.77	[iə]	1.17
DISYLLABIC	1.53	AT LEAST 5 SYLS	1.27
W NOT AFTER [k], [g]	1.39	At Least 4 Syls	1.33
PRECLUSTERSHORTENING	1.35	[ʃ]	1.61
FINAL MAIN STRESS	1.24	[ərə]	1.61
INITIAL [j] NOT BEFORE [u]	1.23	$\{[p], [k]\}+[\int]$	1.91
[υ]	1.22		
[k,g] + Velar Softening			
TRIGGER	1.10		
[au]	1.02		
[a] in Open Syllable	1.00		
TAKER OF [ju] BEFORE [u]	0.71		
GENERAL BIAS AGAINST			
LATINITY (intercept)	0.58		
[ŋ]	0.49		
[θ]	0.37		
TRISYLLABIC SHORTENING			
LESS MANAGERIAL			
Lengthening	0.08		

17. Computing probability of Latinness for one form: *frustration* [,frAs⁺tJeIJən]

• *Frustration* violates four simple constraints penalizing non-Latinity:

	Weight
PREFER LATINATE IF [n]	0.341
PREFER LATINATE IF $[t]$	0.843
PREFER LATINATE IF $\left[\int \right]^5$	1.610
PREFER LATINATE IF STRESSLESS VOWEL	0.119
Total weight	2.904

• Frustration violates one constraint penalizing Latinity, the default constraint:

GENERAL PREFERENCE AGAINST LATINITY	0.578
Total weight	0.578

• The standard maxent formula (e.g. Goldwater and Johnson 2003, (1)) tells us:

 $^{^{5}}$ [ʃ] per se is actually favored in Latinate words; the preference is overridden by stronger anti-Latinate constraints on [ʃ] that are applicable when it is not in its preferred ambisyllabic position.

- P(*frustration* is Latinate) = $\frac{e^{-0.578}}{e^{-0.578} + e^{-2.904}} = 0.911$
- So *frustration* is claimed to be fairly Latinate, but not utterly Latinate.

18. Performance of the Latinity-detecting grammar

• Highest scoring words that I had pre-classified as Latinate (see (13)), all with probabilities at least .996:

protectionism, veterinarian, sexuality, vaporization, geriatrician, industrialization, perfectionism, reactionary, generalization, pasteurization, popularization, polarization, degenerative, inoperative, insectivorous

- Lowest-scoring words pre-classified as non-Latinate
 - Sampling at random from the bottom 500, all with scores less than .001:

warmth, fresh, gulch, swath, preach, shove, pooch, yank, beige, snot, munch, scrooge, sniffle, lynch, wont, brooch, width, shrift, should, coach, trench, snub, cringe, drudge, speech

- Lowest-scoring words that I had pre-classified as Latinate
 - > This appear almost entirely to be misclassifications, *sardine*.
 - > A few are interestingly deviant words with true Latinate suffixes:

public	0.048	[A] in open syllable
wondrous	0.045	unusual attachment of Latinate suffix to native stem
warrior	0.033	
vegetable	0.045	palatoalveolar in coda, due to syncope ['vɛdʒ.tə.bəl]
psychic	0.044	Velar Softening not applied, because Greek (SPE
		suggests a separate sub-stratum for Greek)
seismic	0.034	long V in closed syllable, because Greek

- Highest-scoring words preclassified as non-Latinate (all above .975)
 - Most of these seem to be simple misclassifications of my original definition of Latinity (13).
 - A few seem imperfectly Latinate to me and might suggest revisions to the analysis.

crucifixion Mediterranean, epicurean proletariat, secretariat minutiae intercession, intermission	other spelling of <i>-tion</i> other spelling of <i>-ian</i> Suffix I should have included as Latin Suffix I should have included as Latin Suffix I should have included as Latin
intercession, intermission	Suffix I should have included as Latin
verisimilitude practitioner	Suffix I should have included as Latin stem actually is Latinate

confectionery	stem actually is Latinate
haberdashery	<i>-ery</i> is a native suffix; fooled by [∫]
extravaganza	a bizarre Latin-Italian blend? ⁶

19. Aggregate performance

• For these charts, I separated Latinate and non-Latinate (by my preclassification), then sorted by descending predicted probability.

20. Digression: A theoretical point about the phonotactics of lexical strata

- The Latinity pattern of English is evidence against theories (e.g. Ito and Mester 1995) that assert that the vocabulary strata are *nested* (native words fill a subset of the phonotactics of the foreign words).
- Here, there is no subset relation in either direction.

⁶ Etymology from *OED*: "Italian *estravaganza* (an) extravagance (more commonly *stravaganza*), refashioned after Latin *extra*-."

- The same pattern holds true for Japanese; Kawahara et al. (2005).
- Violations of Ito and Mester's principle are likely to occur whenever the source and recipient languages are complex in distinct ways.

21. The bootstrapping problem for lexical strata

- No external oracle tells the learner that there is a Latinate stratum at all.
- The distinction must somehow *emerge* from the language acquisition process.
- But how?

22. A scenario

- For reasons to be made clear, it makes sense for the language learner to collect a contrastive phonotactics like this:
 - > Population A = "words that have suffix -x".
 - Population B = "words that do not have suffix -x".
- Suppose we (arbitrarily) start doing this with *-ation*, a common (and canonically Latinate) suffix.
- Look at the forms *not* ending in *-ation* that get high scores in the *-ation* grammar.
 - > I checked this and found: these are words that have other Latinate suffixes.
 - > This was true for the top 25 words in my list; each ended in a Latinate suffix.

-ary (6), *-ism* (5), *-al* (4), *-ist* (2), *-able* (1), *-ate* (1), *-iary* (1), *-ician* (1), *-istic* (1), *-ity* (1), *-ize* (1), *-ution* (1)

- Repeating the procedure (contrastive phonotactics for *-ation* plus newcomers) added: *-ous*, *-ative*, *-ator*, *-ion*, *-ure*, *-ent*
- Thus we could imaging a bootstrapping operation, gradually uncovering a stratum of affixes that share their contrastive-phonotactic properties.

FINDING THE ENVIRONMENTS FOR PHONOLOGICAL PROCESSES BY SORTING THE STEM INVENTORY

23. Learning environments by stem-sorting

- Not original with me but proposed by Becker and Gouskova (2012) for Russian data.
- We have some affix that exists in two allomorphic forms **a** and **b**.
- We suppose that the stems that take these allomorphs form populations A ("a-takers") and B ("b-takers")
- Proposal: language learners perform contrastive phonotactics on the two populations and use the result to distribute the affix allomorphs.

24. Comparison: how this is learned as "pure phonology" in OT

• Adopt some system that learns underlying forms.

- Assume some appropriate set of constraints, perhaps from Universal Grammar (Prince and Smolensky 1993).
- Use a ranking algorithm (e.g. Tesar and Smolensky 2000) that finds the ranking that derives the correct pattern.
- There is no inspection of stems per se.

25. A simple case of stem-sorting

- Hayes, Zuraw, Siptár, and Londe (2009) studied Hungarian vowel harmony.
- Although they didn't confess this point, our method in practice was precisely that of contrastive phonotactics!
- Two populations of stems:
 - A: those that take front-vowel suffixes
 - ➢ B: those that take back-voweled suffixes

26. The most effective way to separate the populations: vowel harmony constraints

- E.g. stems ending in front rounded vowels are always in Population A.
- Those ending in back vowels are always Population B
- Etc.

27. The surprising result

- In the "zones of lexical variation", where harmony is unpredictable (about 900 stems) **stem-final consonants** affect harmony.
- More front suffixes when the stem ends in
 - ➤ a bilabial consonant
 - ➤ a sibilant
 - ➤ a coronal sonorant
 - ➤ a consonant cluster
- The effect is fairly large: about 1/3 back suffixes when none of these environments is met; close to zero when two are present.

28. Stem-sorting, or ordinary whole-word phonology?

- The vowel constraints work fine as normal phonology the suffix allomorph that better AGREE's with the stem vowel (Lombardi 1999) will surface as the winner.
- But for consonants, things are different you really have to look at the stems.

29. Why the effect must be a stem effect

- About half of the Hungarian suffixes begin with a consonant in one of the four classes of (27), like dative [-nɛk]/[-nɔk], with a coronal sonorant.
- But these suffixes do not take front allomorphs more often than the others; if anything, it is the reverse.

• Also, the consonant effects on vowel backness fail to show up when you inspect the stem inventory — they are simply not part of Hungarian gradient phonotactics.⁷

• To get the distribution right, you must do stem-sorting — just as scenario (23) says.

Comparative phonotactics

30. A second application of phonotactic stem-sorting: a common scenario for opaque phonology⁸

- Stem type A takes affix allomorph **a**.
- Stem type B takes affix allomorph **b**.
- Then, a phonological process neutralizes the distinction that is used for picking **a** and **b**.

31. Lomongo Glide Formation (Hulstaert 1961, Kenstowicz and Kisseberth 1979)

- Most consonant stems take 2 sg. /o-/: [sanga] 'say-imp. [o-sanga] 'say-2 sg.
- Vowel stems take glided [w-]: [ina] 'hate-imp.' [w-ina] 'hate-2 sg.'
- /b/-stems take /o-/, then b → Ø V ____ V obscures the output:
 [bina] 'dance-imp.' /o-bina/ → [oina] 'dance-2 sg.'
- This is standard counterbleeding opacity.
- It is learnable by sorting the isolation stems for whether they take [o-] or [w-].
 - ➤ [w-]-taking stems always being with a vowel
 - ➢ [o-]-taking stems always begin with a consonant.

32. Turkish /k/-deletion (Kenstowicz and Kisseberth 1979, 191-193)

- Vowel stems take [-su] for 3 sg. poss.: [aru] 'bee' [aru-su] 'his bee'
- Consonant stems take [-w]:
 - [kuz] 'daughter' [kuz-u] 'his daughter'
- Consonant stems in [...k] take [-w], then lose the /k/ intervocalically:

[ajak] 'foot' /ajak- u/ \rightarrow [ajau] 'his foot'

• Sorting isolation stems for what allomorph they take solves this problem.

33. Finnish genitive plurals (Anttila 1997)

- Trisyllabic stems ending in /a/ take [-iden]
 - /mansikka/ 'strawberry' [man.si.ko-i.den]
- Trisyllabic stems ending in /o/ take [-jen]

⁷ Thanks to Kie Zuraw, who kindly prepared a spreadsheet proving this point when the question arose.

⁸ For opacity see Kiparsky (1973); for a review of the (huge) literature see Bakovic (2011).

- /fyysikko/ 'physicist' [fyy.sik.ko-.jen]
- But because of the process $a \rightarrow o / __i$, the difference is not detectible in surface forms.
- Allomorphy by stem-sorting could solve the problem.

34. Prediction

• If speakers sometimes distribute affix allomorphs using stem-sorting, this particular pattern should be a form of **stable opacity** — unlike contextual counterfeeding in general.

PRODUCT-ORIENTED GENERALIZATIONS

35. Origin of the idea

- Bybee and Moder (1983)
- Morphological processes can be defined not as an input-output relationship but simply as a phonological characterization of their outputs.
- See Kapatsinsky (2013) for experimental evidence supporting the concept.

36. Example: English past tenses ending in [ot]

[baɪ] - bought, [brɪŋ] - brought, [kætʃ] - caught, [faɪt] -fought, [sik] - sought, [titʃ] -taught, [θıŋk] - thought

37. A plausible research agenda

- Analyze these effects using constraint-based linguistics.
- Expressed product-oriented generalizations as constraints defined on outputs (i.e., specific to a morphological category; not the purely phonological generalizations of OT) and let these constraints participate in the selection of winning candidates.
- See Becker and Gouskova (2012) for application to Russian jers.

38. What sort of phonotactics should serve as the basis for product-oriented generalizations?

- I conjecture that **comparative** phonotactics would work better e.g., Population A = irregular past stems, Population B = all other words
- Why? Consider the past tense of nonce form *pwing*.
 - \geq ??[pwAŋ] has low absolute phonotactic probability, due to its initial cluster.
 - > But I judge that it's a very likely candidate as the past tense of *pwing*.
 - Absolute phonotactics would be fooled here, comparative would not.

39. Analysis carried out here

• A list of 138 irregular English past tense forms, from Albright and Hayes (2001).

B. Hayes

<u>p. 12</u>

- For simplicity, I used only bare stems; i.e. *held*, but not *beheld*.
- I created a simple maxent grammar for comparative phonotactics that distinguishes irregular past stems from ordinary words.

40. The grammar, with examples

Constraint	Weight	Forms it prefers	Examples forms
BASELINE BIAS AGAINST IRREGULARS	10.81	~17000	(almost all words)
IRRS. SHOULD END IN [ɛpt]	5.85	6/138	kept
IRRS. SHOULD BE MONOSYLLABIC	4.37	136/138	most irregulars
IRRS. SHOULD END IN [aund]	4.09	4/138	found
IRRS. SHOULD END IN [ət]	4.02	8/138	taught
IRRS. SHOULD END IN $[\epsilon] + \{[t], [d]\}$	3.65	15/138	bet
IRRS. SHOULD END IN [Aŋ]	3.36	8/138	clung
IRRS. SHOULD END IN $[\varepsilon] + \{[1], [n]\} + \{[t], [d]\}$	3.28	11/138	felt
IRRS. SHOULD END IN $[I] + \{[t], [d]\}$	3.22	12/138	bit
IRRS. SHOULD END IN [æŋk]	2.82	3/138	sank
IRRS. SHOULD CONTAIN [OU]	2.32	22/138	rose
IRRS. SHOULD END IN [u]	2.13	7/138	blew
IRRS. SHOULD CONTAIN [U]	1.99	5/138	shook
IRRS. SHOULD CONTAIN $[\Lambda]$	1.96	19/138	wrung, slung
IRRS. SHOULD END IN [UK]	1.68	3/138	took, shook
IRRS. SHOULD HAVE FINAL STRESS	1.62	138/138	besought
IRRS. SHOULD END IN ALVEOLAR STOP	0.84	57/138	met, led

41. Some indication that product-oriented generalizations productively govern people's behavior

- Albright and Hayes's (2001) nonce-probe experiment: "give us the past tense of the following imaginary verbs."
- Often, participants would give answers that could not be generated by any rule in the machine-created rule system we had devised (no precedent among existing irregulars for the change the participant made).
- We conjectured that these forms are product-oriented.
- Example: some participants would seize upon a particular product-oriented generalization and stick with it:
 - Participant 15 (9 of 60 total responses): [baiz ~ bouz], [bred3 ~ broud3], [tʃaind ~ tʃound], [daiz ~ douz], [kaiv ~ [kouv], [prik ~ prouk], [raint ~ rount], [swkil ~ skwoul]

Participant 3a (24 out of 60): [blig ~ blag], [tʃaind ~ tʃand], [drais ~ dras], [drit ~ drat], [flet ~ flat], [flidz ~ fladz(d)], [gez ~ gaz(d)], [glip ~ glap(t)], [graint ~ grant], [kiv ~ kav(d)] etc., etc.

42. Evaluating the grammar in (40) using these data

- I consider only volunteered forms that Albright and Hayes's rule-based grammar was unable to generate from the present stem so unlikely to be source-oriented.
- Predictions for the comparative-phonotactic analysis.
 - Real irregular past stems should get relatively high probabilities (the grammar should work for the data it was trained on).
 - Random real words should get low values.
 - The volunteered forms from the Albright/Hayes subjects, if they are following a product-oriented generalization, should get values in the neighborhood of the real irregulars.

43. Graphs: actual probabilities

44. Graphs: log probabilities (reveal differences in the long tails)

• It looks like the Albright/Hayes subjects were indeed following output-oriented generalizations, and that these can be located in part by performing comparative phonotactic analysis.

SUMMING UP

45. Three possible uses of contrastive phonotactics

- Lexical strata
- Learning alternations by stem-sorting
- Learning alternations by apprehending product-oriented generalizations

WHAT STILL NEEDS TO BE DONE?

46. Assess this model against Becker and Gouskova's approach

- Becker and Gouskova (2012) believe: comparative phonotactics is deduced from absolute phonotactics.
 - Learn the absolute phonotactics of Population A
 - Learn the absolute phonotactics of Population B
 - > Then, probability that a form x belongs to A is

x's phonotactic probability construed as A

 \overline{x} 's phonotactic probability as A + x's phonotactic probability as B

- This strikes me as intriguing but oblique why not solve the problem as directly as possible? The non-contrastive information will probably just be noise.
- My own efforts at applying the BG method to Latinity do yield less accurate results, as measured by summed log probability.

47. Experimental work with native speakers

- Consult native intuition on all of these issues (e.g., how Latinate is this word?) with experiments.
- I predict that, e.g. wepechation should sound much less Latinate than, say tenecation

48. Better constraint selection

- What is the right way to find the best constraints?
- This is a hard problem for all constraint-based learnability study.

49. Bootstrapping

• Find a mathematically principled and reliable way to bootstrap lexical strata.

References

- Anttila, Arto. 1997. Deriving variation from grammar. In Frans Hinskens, Roeland van Hout and Leo Wetzels (eds.), *Variation, change and phonological theory*, Amsterdam, John Benjamins. pp. 35-68
- Baković, Eric (2011) Opacity and ordering. In John Goldsmith, Jason Riggle, and Alan C. L. Yu (eds.) *The handbook of phonological theory*, 2nd ed. Oxford: Wiley-Blackwell.
- Becker, Michael and Maria Gouskova. 2012. Source-oriented generalizations as grammar inference in Russian vowel deletion. Ms., SUNY Stony Brook and NYU.
- Bybee, Joan and Carol Lynn Moder. 1983. Morphological classes as natural categories. *Language* 59:251-270.
- Cedergren, Henrietta and David Sankoff. 1974. Variable rules: Performance as a statistical reflection of competence. Language, 50: 333-355.
- Chomsky, Noam and Morris Halle. 1968. The sound pattern of English. New York: Harper and Row.

- Christiansen, Morten, & Monaghan, Padraic. 2006. Discovering verbs through multiple cue integration. In K.Hirsh-Pasek & R. M.Golinkoff (Eds.), Action meets word: How children learn verbs (pp. 88– 110). New York: Oxford University Press.
- Gelman, Andrew, Alek Jakulin, Maria Grazia Pittau, and Yu-Sung Su. 2008. A weakly informative default prior distribution for logistic and other regression models. *The Annals of Applied Statistics* 2.1360–83.
- Gelman, Andrew, Yu-Sung Su, Masanao Yajima, Jennifer Hill, Maria Grazia Pittau, Jouni Kerman, and Tian Zheng. 2009. arm: data analysis using regression and multilevel/hierarchical models. R package. http://cran.r-project.org/web/packages/arm
- Goldwater, Sharon, and Mark Johnson. 2003. Learning OT constraint rankings using a maximum entropy model. *Proceedings of the Stockholm Workshop on Variation within Optimality Theory*, ed. by Jennifer Spenader; Anders Eriksson, and Osten Dahl, 111–120. Stockholm: Stockholm University Department of Linguistics.
- Hayes, Bruce and Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry* 39: 379-440.
- Hayes, Bruce, Kie Zuraw, Péter Siptár, and Zsuzsa Londe. 2009. Natural and unnatural constraints in Hungarian vowel harmony. *Language* 85: 822-863.
- Hulstaert, Gustaaf. 1961. Grammaire du lomongo. Tervuren: Musée royal de l'Afrique centrale.
- Itô, Junko and Armin Mester. 1995. Japanese phonology. *The Handbook of Phonological Theory*, ed. J. Goldsmith, 817-838. Oxford: Blackwell.
- Kapatsinski, V. 2013a. Conspiring to mean: Experimental and computational evidence for a usage-based harmonic approach to morphophonology. Language 89: 110-148.
- Kawahara, Shigeto, Kohei Nishimura, and Hajime Ono. 2005. Unveiling the unmarkedness of Sino-Japanese. In William McClure, ed., *Japanese/Korean Linguistics* 12. Stanford: CSLI.
- Kenstowicz, Michael and Charles Kisseberth. 1979. *Generative phonology: Description and theory*. San Diego: Academic Press.
- Kiparsky, Paul. 1973. Abstractness, opacity and global rules. In O. Fujimura (ed.) *Three dimensions of linguistic theory*. Tokyo: Taikusha. 1–136.
- Kiparsky, Paul. 1982. Lexical phonology and morphology. In I. S. Yang (ed.), *Linguistics in the Morning Calm.* Seoul: Hanshin. 3-91.
- Legendre, Géraldine, Yoshiro Miyata and Paul Smolensky. 1990. Harmonic Grammar: A formal multilevel connectionist theory of linguistic well-formedness: Theoretical foundations. Report CU-CS-465-90. Computer Science Department, University of Colorado at Boulder.
- Lombardi, Linda. 1999. Positional faithfulness and voicing assimilation in Optimality Theory. *Natural Language and Linguistic Theory* 17: 267-302.
- McCawley, James. 1968. The phonological component of a grammar of Japanese. The Hague: Mouton.
- Moreton, Elliott, and Shigeaki Amano. 1999. Phonotactics in the perception of Japanese vowel length: Evidence for long-distance dependencies. Proceedings of the 6th European Conference on Speech Communication and Technology, Budapest.
- Prince, Alan and Paul Smolensky. 1993/2004. Optimality theory: Constraint interaction in generative grammar. Technical report, Rutgers University Center for Cognitive Science. [Published 2004: Blackwell]
- R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Tesar, Bruce and Paul Smolensky. 2000. Learnability in Optimality Theory. MIT Press.