Online processing of German (mor)phonotactic clusters by adults and adolescents

C. Celata, K. Korecky-Kröll, I. Ricci & W.U.

Dressler

Scuola Normale Superiore di Pisa & University of Vienna

C clusters and their distributional restrictions

- Clusters allowed in monomorphemic units ('phonotactic clusters', with exclusive phonological motivation) vs. clusters resulting from morphological concatenation ('morphonotactic clusters')
- 'Morphonotactic' clusters sometimes violate morpheme-internal phonological restrictions
 English /-fs =vz/ as in laughs loves wife's
 - English /-fs, -vz/ as in *laughs*, *loves*, *wife's*... German /-xst/ as in *lach+st* 'you laugh'
- In other cases, morphological concatenation produces morphonotactic clusters that do not violate phonotactic rules:
 - German /-I(#)st/ as in sattel+st 'you staddle' vs. monomorphemic Wulst 'bulge'

(Dressler & Dziubalska-Kołaczyk 2006)

Strong Morphonotactic Hypothesis

Morphonotactic clusters - and especially those that are exclusively or strong default morphonotactic - function as boundary signals, facilitate the processing of morphologically complex words, and are easier to acquire

- Morphonotactic clusters are acquired earlier and faster by typically developing children (but are more difficult for children with SLI) (Marshall & van der Lely 2006, Kamandulyte 2006, Zydorowicz 2007, Fürst et al. 2011)
- Adults detect consonants, C clusters and VC sequences faster if they are adjacent to a morpheme boundary (= if they form morphonotactic clusters (Freiberger et al. 2011, Korecky-Kröll et al., submitted)

Non-exclusively morphonotactic clusters (e.g. German /-I(#)st/)

- Are they differently processed with respect to their homophonous phonotactic counterparts?
- Are there two different phonotactic 'representations' for homophonous C#CC vs. CCC clusters?
- Are there acquisitional preferences?
- Do speech production strategies change for C#CC vs. CCC?

Non-exclusively morphonotactic clusters (e.g. German /-I(#)st/)

- Are they differently processed with respect to their phonotactic homophonous counterparts?
- Are there two different phonotactic 'representations' for homophonous C#CC vs. CCC clusters? → computational study
- Are there acquisitional preferences?
- Do speech production strategies change for C#CC vs. CCC?

A computational approach to morphonotactics: evidences from German B. Calderone, C.

Celata, K. Korecky-Kröll, W.U. Dressler (submitted to Language Sciences)

Sequence /nst/		Sequer	nce /xst/	Sequence /mst/		
Α	В	С	D	Е	F	
Kunst	kannst	sprichst	tunlichst	kommst	leimst	
Wanst	nennst	suchst fluchst		nimmst	kamst	
Gespenst	verzinst	rauchst	kochst	bremst	bimst	

90 words in total

Null hypothesis: no significative difference between the groups (A,B) = (C,D) = (E,F)

Morphological boundaries may have an impact on phonotactic representations

Non-exclusively morphonotactic clusters (e.g. German /-I(#)st/)

- Are they differently processed with respect to their phonotactic homophonous counterparts? → 2 behavioral experiments on Austrian German
- Are there two different phonotactic 'representations' for homophonous C#CC vs. CCC clusters? → computational study
- Are there acquisitional preferences?
- Do speech production strategies change for C#CC vs. CCC?

EXPERIMENT #1 'Split cluster' test

"Insert /i/ as fast as possible whenever you find a C cluster in the word stimulus"

Training: participants instructed to split CC clusters (LUFT > "lufit", BRAUCH > "birauch" Test: split CCC clusters (intermixed with many CC fillers)

Experimental items

	Phonotactic		Morphonotactic		
Cluster type		Frequency		Frequency	
/nst/	DUNST	386	KENNST	102	
	WANST	5	KANNST	1661	
	KUNST	6325	MEINST	102	
	GUNST	1388	NENNST	21	
/pst/	OBST	869	LOBST	94	
/lst/	WULST	20	WEILST	45	
/Nst/	ANGST	17370	LÄNGST	19756	
Average frequency		3766.143		3111.571	

Frequencies calculated as occurrences in Leipzig Deutscher Wortschatz Online (500 million words)

A general preference for the "IST" splitting strategy (over the "SIT" one) must be expected:

- /-ist/ more frequent than /-sit/ word finally in German
- /CVst/ phonotactically preferred with respect to /nsV/ or /psV/

Nevertheless, for MORPHO clusters there is a further effect: "IST" strategy consistent with the concatenation process (e.g. lob+i+st)

Prediction:

MORPHO clusters are more easily, quickly and frequently split according to the IST response type, compared to PHONO clusters.

Analysis:

- type of response: CiCC vs. CCiC vs. null response
- RTs

2 groups of native Austrian German speakers:

38 adults

26 adolescents (<16 y.o.)

Exp 1-Results: response type

Overall, the subjects made more errors at splitting PHONO clusters than MORPHO clusters

Response

ager ange	Status			Frequency	Percent	Valid Percent	Cumulative Percent
adult	phono	Valid	0	14	5,3	5,3	5,3
	pilolio		ist	155	58,3	58,3	63,5
			sit	97	36,5	36,5	100,0
			Total	266	100,0	100,0	
	morpho	Valid	0	8	3,0	(3,0)	3,0
			ist	163	61,3	61,3	64,3
			sit	95	35,7	35,7	100,0
			Total	266	100,0	100,0	
adoleso	phono	Valid	0	32	17,6	(17,6)	17,6
ent			ist	97	53,3	53,3	70,9
			sit	53	29,1	29,1	100,0
			Total	182	100,0	100,0	
	morpho	Valid	0	13	7,1	7,1	7,1
			ist	117	64,3	64,3	71,4
			sit	52	28,6	28,6	100,0
			Total	182	100,0	100,0	

Exp1-Results: RTs

RTs turned out to be extremely variable:

- across participants

- across items

All subjects were faster at giving the IST response than the SIT response (the comparison is significant only for the adult subjects though, p < .050):

However, there was no particular IST-advantage of MORPHO clusters with respect to PHONO clusters:

Experiment #2 – Fragment monitoring (slightly modified version)

"Press as soon as possible the green button whenever the heard word contain the target consonant sequence (YES response); press the red one if the heard word does not contain the target sequence (NO response)".

Experimental items

		Phonotact	ic		Morphonoto	actic	
Cluster type	Position		Frequency	Position		Frequency	
/nst/	w-final	sonst	12691	w-final	schonst	6	
	w-final	Wanst	22	w-final	kannst	29709	
	w-final	Kunst	31593	w-final	kennst	21628	
	w-final	Gunst	2715	w-final	nennst	155	
	w-interna	Monster	983	w-intern	dünnste	62	
/pst/	w-final	Papst	16971	w-final	knipst	113	
	w-final	Herbst	3484	w-final	plumpst	35	
	w-final	Obst	6058	w-final	gibst	24740	
/Ist/	w-final	Wulst	29	w-final	willst	3768	
	w-interna	Elster	99	w-intern	prallste	4	
	w-interna	Polster	1431	w-intern	vollste	104	
/kst/-/xst/	w-final	Text	17026	w-final	mixt	215	
	w-interna	Gangster	1313	w-intern	längste	2423	
	w-final	Angst	5737	w-final	denkst	694	
	w-final	Axt	88	w-final	sagst	1069	
verage frequency			6683			5648	
ong vowel							

Frequency calculated as occurrences in Leipzig Deutscher Wortschaft Online (500 millions words)

Fragment monitoring (also known as syllable monitoring)

- primarily used to determine which linguistic units are involved in word recognition
- subjects are presented with targets that are either congruent or incongruent with a linguistic unit in the target-bearing item
- congruent targets → faster detection latencies
- for example, subjects are faster to detect a target when it corresponds to the first syllable of the carrier than when it corresponds to more or less than the first syllable → perceptual relevance of the syllable

Prediction:

Since MORPHO clusters are incongruent with linguistic units (=morphemes), they will be longer and less accurate to detect than PHONO clusters (which are neutral with respect to morpheme segmentation)

Analysis:

accuracy (= number of errors in cluster detection)
RTs

2 groups of native Austrian German speakers: 42 adults vs. 26 adolescents (< 16 y.o.)

Exp2 - Results: accuracy

Errors distribution overall

- Adolescents > adults
- experimental items > fillers

	error	Adolescent % error
Experimental items	11.7	21
All dataset	3.5	5.9

Results: accuracy

In both adult and adolescent performance, MORPHO clusters are more difficult to detect than PHONO counterparts.

However, the pattern is significant for adolescent only.

Exp2-Results: RTs

Only correct responses considered (adults, N = 556; children N = 308)

All subjects were faster at detecting PHONO clusters than MORPHO clusters; the comparison is significant for both adult and adolescents

Summary of the results

	Exp #1 "Split- cluster" test		Exp #2 Sequence monitoring	
	Adolescent	Adult	Adolescent	Adult
MORPHO clusters easier to split	yes	slight tendency		
MORPHO clusters more frequently split according to the "IST" option	yes	no		
MORPHO clusters faster to split	no	no		
PHONO clusters easier to detected			yes	slight tendency
PHONO clusters faster to detect			yes	yes

Empirical limitations imposed to the study of online processing of (mor)phonotactic clusters

- cluster distribution in the lexicon is strongly idiosyncratic, and frequency effects are hard to avoid
- appropriate experimental procedures not easy to find (cannot use nonwords!)

Nevertheless, the two experiments allow some tentative conclusions, at least for the following aspects:

- In processing MORPHO clusters, the speakers rely on the presence of the internal morphological boundary:
 - I. MORPHO clusters are easier to split
 - II. monitoring MORPHO clusters requires greater effort/longer time
- Adolescents seem to be more sensitive to cluster (mor)phonotactic status than adults

Future studies

Non-exclusively morphonotactic clusters (e.g. German /-I(#)st/)

- Are they differently processed with respect to their phonotactic homophonous counterparts?
- Are there two different phonotactic 'representations' for homophonous C#CC vs. CCC clusters?
- Are there acquisitional preferences?
- Do speech production strategies change for C#CC vs. CCC?

In preparation: "Nasal place assimilation in complex words as a function of morphosemantic transparency. An EPG study of German and Italian"

with Sylvia Moosmueller and Silvia Calamai