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Covariation among words is certainly related to meaning, meaning 
similarity, and psychological processing. We argue, however, that the causal 
arrow is from meaning (and meaning similarity) to covariation, not vice versa. 
Consequently, covariation is not meaning, it is unlikely to provide an accu-
rate metric for similarity of meanings, and embodied learning mechanisms, 
rather than computation of statistics, underlie effects of covariation on psy-
chological processing. We report the results from two experiments that pro-
vide the first empirical test of the strong covariation claim that meaning can 
be derived from covariation structure. In the experiments, people studied the 
covariation among unnamed features taken from a familiar domain. In the 
first experiment, after learning the covariation structure of the features, par-
ticipants were unable to choose the correct domain on a forced choice test, and 
they were unable to use the learned structure to grossly classify unnamed 
features even after the domain and majority of features were named. In the 
second experiment, the majority of the features was named during the study 
of the covariance structure. Nonetheless, participants were unable to use 
the learned structure to classify the few remaining unnamed features. Thus, 
contrary to the strong covariance claim, covariance structure alone is not par-
ticularly useful for deriving meaning.

Keywords: meaning, distribution hypothesis, embodiment, covariation, 
connectionism

Constraint on Covariation: It’s not meaning

The distributional hypothesis is that words with similar distri-
butional properties have similar meanings (e.g., Baroni & Lenci, this 
volume; Sahlgren, this volume). The hypothesis has great appeal and 
makes intuitive sense, but to what degree is it correct? Some (e.g., 
Burgess & Lund 1997; Landauer & Dumais 1997; Sahlgren, this vol-
ume) have also proposed that “distributional representations do con-
stitute full-blown accounts of linguistic meaning” (Sahlgren, emphasis 
in the original). In contrast, we argue that a) distributional analyses 
cannot provide a sufficient basis for similarity of meaning, b) the 
claim that distributional information is a full-blown account of mean-
ing is, except under a solipsistic interpretation of meaning, unlikely 
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to be correct, and c) using the data from two experiments, that real 
people have a difficulty using distributional information alone to 
determine even an approximate meaning for new symbols.

The papers in this special edition of the Italian Journal of 
Linguistics demonstrate the appeal of distributional information, 
particularly for machine-based natural language processing. For 
example, Fazly and Stevenson (this volume) propose that distribu-
tional information can be used to automatically classify multiword 
expressions (MWEs) into one of four classes ranging from the idio-
matic (e.g., “shoot the breeze”) to the mostly compositional (e.g., “give 
a present”). They describe ten distribution-based measures, such as 
institutionalization (joint co-occurrence probability), and fixedness 
(e.g., lack of syntactic variation) that might predict the MWE class. 
Combining the ten distribution-based measures leads to modest suc-
cess, in that the proportion of correct classifications of the MWEs 
ranged from .39 to .67.

Rumshisky (this volume) sets for herself a similarly daunting 
task: using distributional analyses to distinguish among the multiple 
senses of polysemous verbs. The computational technique is based 
on the concept of selectors, words with which the target verb forms 
syntactic dependencies. Her five-step algorithm attempts to identify 
different sets of selectors for the different senses of the target verb 
so that the occurrence of the target with members of a selector set 
should identify the relevant meaning of the target.

Baroni & Lenci (this volume), Sahlgren (this volume), and 
Schulte im Walde & Melinger (this volume) echo Fazly & Stevenson 
in suggesting that different distributional measures may pick up on 
different aspects of meaning. For example, Baroni & Lenci analyze 
two distributional approaches to finding the properties of concepts. 
One approach, Singular Value Decomposition, examines the co-occur-
rence of words within five words of a target. The dimensionality of 
the resulting co-occurrence matrix is reduced using singular value 
decomposition, and the nearest (in SVD space) neighbors of a target 
word are taken as properties of that target word. The second distri-
butional approach, StruDEL (for Structured Dimensional Extraction 
and Labeling), finds words with particular relations to a target (not 
just co-occurrence) before attempting to generalize patterns for that 
target. For both distributional analyses, the question of interest is 
how the properties of the target word identified through distribution-
al analyses compare to the properties determined from human-gener-
ated norms. The results are revealing: Properties generated by SVD 
are dominated by category coordinates (e.g, cat-dog) and situationally 
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associated entities (e.g., spoon-bowl). In contrast, the properties gen-
erated by StruDEL are more evenly distributed among six different 
property types.

Although each of these papers has documented some success in 
using distributional analyses as a way to assess similarity of mean-
ing, there are at least two good reasons to suspect that no matter 
how large the corpus and no matter how creative and complex the 
analyses, distributional analyses of similarity will never be com-
pletely successful. The first reason is that language use is creative: 
the meanings of words are shaped by non-linguistic situations and 
human goals, and those goals and situations are endless. Hence, dis-
tributional analyses based on past usage is unlikely to reflect new, 
creative usage of words. French (1997) provides several interesting 
examples of the problem. He suggests that one can choose any word 
or concept X and any word or concept Y and find ways in which they 
are similar. For example, a credit card is like a) a hotel door key in 
shape, size, and rigidity; b) a Braille book in that each has raised 
letters; c) a ruler in that it can be used to draw straight lines; d) an 
autumn leaf in regard to wind resistance; e) a breeze because it can 
be used to cool one off when used as a fan; f) fingernails in that it can 
create annoying sounds when scrapped on a blackboard; and g) a bad 
friend in that both can get you in trouble. With a bit of thought, one 
can find similarities between a credit card and a rose, a horse race, or 
the Spanish Inquisition! Because each of these similarities is a new, 
creative response to a new goal (in this case, demonstrate how X can 
be similar to Y), the results from distributional analyses of previous 
uses of credit card will be close to irrelevant.

French’s example also illustrates the second reason why distribu-
tional analysis are unlikely to reveal much about meaning. Namely, 
meaning is not inherent in the words, but in the qualities and uses of 
the objects and events that the words refer to. Thus, the meaning of 
credit card appears to be flexible because of the many qualities and 
usages of the object, not (only) because the words themselves may be 
used flexibly.

A linguist interested only in the putative structure of language 
and not language use might dismiss these examples as fanciful. But 
the examples should give pause to any one interested in the psychol-
ogy of meaning, similarity of meaning, and natural language process-
ing. These examples suggest that human meaning can only be ascer-
tained by a system with a human-like body, human-like experiences 
(e.g., that the sound of fingernails on a blackboard is annoying), and 
human-like goals.
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The aforementioned papers share the goal of using distribu-
tional analyses to further automatic, machine-based, natural lan-
guage processing. Onnis et al. (this volume) have a different goal, 
namely, to identify how distributional statistics might be used in 
human language comprehension. They note that some words seem 
to have semantic valence tendencies (SVTs). For example, the verb 
cause is often used in descriptions of negative events (e.g., cause 
trouble), whereas the verb provide is typically positive (e.g., provide 
work). Their research demonstrates that a) when people are asked to 
complete sentences using verbs such as these, the completions often 
reflect the SVTs, b) human reading is slowed by violation of an SVT, 
and c) a semi-automatic algorithm can successfully extract SVTs from 
a corpus. Onnis et al. suggest that word co-occurrence statistics “are 
likely computed by the human brain during the processing of lan-
guage”. Later, we will suggest that the data are more likely to reflect 
the brain’s learning about situations rather than the computation of 
statistics.

Among the authors included in this special volume, only Sahlgren 
suggests that distributional representations are equivalent to mean-
ing, as noted in the quote in the first paragraph of this article. His 
claim, however, is couched within the particular paradigm of struc-
turalist linguistics. As Sahlgren notes, within this framework “lin-
guistic meaning is inherently differential, and not referential (since 
that would require an extra-linguistic component); it is differences of 
meaning that are mediated by differences of distribution” (Sahlgren, 
emphasis in original). Later he writes, “…the only meanings that 
exist within a structuralist account of language are the types of rela-
tions distributional methods acquire”. Sahlgren’s analysis appears to 
be correct by virtue of the following tautology: Structuralist linguistic 
meaning is only concerned with differences in meaning; words with 
different distributional properties will have different meanings; hence 
distributional properties captures all (structuralist) meaning.

Of course, once we become concerned with the psychology of 
meaning and language use, then other forms of meaning, such as 
referential meaning, become central. Nonetheless, several theories of 
psychological (including referential) meaning are built on a founda-
tion of distributional analyses. Consider, for example, that Landauer 
& Dumais’s (1997) Latent Semantic Analysis (LSA) is meant to be 
a theory of acquisition, induction and representation of knowledge. 
The LSA mechanism begins by noting the frequency of occurrence 
of about 60,000 words across some 30,000 texts, forming a matrix 
with words as rows, texts as columns, and frequencies as the cell 
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entries. After some pre-processing, the matrix is submitted to a sin-
gular value decomposition to reduce the dimensionality and thereby 
enforce consistency. The result is a matrix in which the words are 
coded with values on about 300 dimensions (in contrast to the 30,000 
texts). Landauer & Dumais (1997:215) state, “… we suppose that 
word meanings are represented as points (or vectors; later we use 
angles rather than vectors) in k dimensional space…”. Later in the 
paper they write: “Given the strong inductive possibilities inherent 
in the system of words itself, as the LSA results have shown, the vast 
majority of referential meaning may well be inferred from experience 
with words alone” (p. 227). The obvious implication of this claim is 
that experience with the world is not important for the “vast major-
ity of referential meaning…” Note that all perceptual information is 
stripped away before coding in LSA in that (a) words are descriptions 
not the objects themselves, and (b) it is frequencies of words that 
matter. That is, in LSA frequency (or covariation in frequency after 
dimensional reduction) is the currency of meaning, not say, redness, 
or loudness, or spatial extent or the neural coding of redness, loud-
ness, or spatial extent.

Landauer & Dumais (1997:227) do recognize the need for some 
sort of symbol grounding: “But still, to be more than an abstract sys-
tem like mathematics words must touch reality at least occasionally”. 
To ground a word such as rabbit they suggest, “judiciously add[ing] 
numerous pictures of scenes with and without rabbits to the context 
columns in the encyclopedia corpus matrix, and fill[ing] in a handful 
of appropriate cells in the rabbit and hare word rows.” Nonetheless, 
the currency remains frequency because all processing in the LSA 
theory is based solely on the frequencies (or the dimensional values 
after singular value decomposition), not directly on anything to do 
with the pictures or perceptual or action systems. For example, using 
LSA to judge that a rabbit and a hare are similar, even with the 
addition of picture contents, would not require accessing visual infor-
mation in the pictures. Instead, the judgment would be based on a 
mathematical comparison of the similarity of the vectors representing 
rabbit and hare. Similar claims are made by Burgess and Lund (1997) 
about Hyperspace Analogue to Language (HAL), another system that 
tracks covariation amongst words.

There are many demonstrations that covariation, as implement-
ed in LSA and HAL, could serve as a basis of meaning. For example, 
Landauer & Dumais report that similarity between LSA vectors can 
be used to pick out synonyms about as well as non-Native English 
speakers applying for admission to U.S. colleges. Nonetheless, all of 
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the demonstrations are correlational, and consequently, the causal 
relations cannot be determined. Consider, for example, the finding 
that the angle between two LSA vectors predicts the extent to which 
the corresponding words will prime one another in a lexical decision 
task. One possibility is that covariation amongst words determines 
meaning, and hence covariation correlates with lexical decision, a 
putative measure of relational meaning. Another possibility, how-
ever, is that words that share meaning (e.g., cow and bovine) tend to 
appear in similar texts because of the overlap in meaning. Thus, the 
covariation does not determine meaning, it is the shared meaning 
that determines the covariation.

In contrast to models that depend on covariation for meaning, 
there are data (e.g., Glenberg & Robertson 2000) and arguments (e.g., 
Harnad 1990; Searle 1980) suggesting that word meaning requires 
more than covariation. Consider Harnad’s (1990) symbol merry-go-
round argument. Imagine someone traveling to another country who 
does not speak the language, but who has a dictionary written in that 
language. The traveler sees a sign and wishes to translate it. The 
traveler looks up the first word in the dictionary, but of course the 
definition is only in terms of other words in the unknown language. 
Undaunted, the traveler looks up the first word in the definition, but 
it too is defined solely in terms of other unknown words. No matter 
how many words the traveler looks up, that is, no matter how much 
covariation the person tracks, the traveler will never be able to induce 
the meaning of even the first word in the sign.

Furthermore, there is strong empirical evidence for the ground-
ing of word meaning in perception and action, not (just) in the word’s 
covariation with other words. For example, Kaschak et al. (2005) dem-
onstrated that watching displays of visual motion affects the compre-
hension of sentences describing visual motion. Glenberg & Kaschak 
(2002) demonstrated that understanding a sentence about directional 
action differentially affects literal action in compatible and incompat-
ible directions. Hauk et al. (2004) found that listening to verbs pro-
duced enhanced activation in areas of motor cortex corresponding to 
the effectors used in the actions the verbs named.

In summary, there are reasons to suppose that covariation 
plays a critical role in determining the meaning of words, but there 
is equally good evidence to suggest that that role may be limited. 
Importantly, there do not seem to be any direct tests of the claim 
that ‘vast majority of referential meaning’ can arise from covariation 
alone. That is, the evidence supporting covariation is mainly correla-
tional, and the evidence demonstrating that some words are grounded 
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in perception and action does not rule out the possibility that some (or 
even the vast majority of) meaning may be based on covariation. The 
experiments reported next are designed to fill the evidential gap.

The experiments contrast performance of two conditions, a 
Learning condition and a Control condition. In the Learning condi-
tion, participants are exposed to the coherent covariation of stimuli 
(radio buttons on a computer interface). We know that the covariation 
is coherent, because they are taken directly from a random sample of 
real-life stimuli: 102 examples of two-wheeled vehicles found around 
campus. Each of the examples was coded on 29 features such as Is a 
road bike, has a chain, and is noisy (see Table 1). For the participants 
in the Learning condition, however, these verbal descriptions of the 
features were replaced during learning with the on or off occurrence 
of radio buttons (see Figure 1, although the verbal labels were sup-
pressed). Thus, a particular example of a road bike would be pre-
sented with particular radio buttons highlighted (but not named); 
other examples of road bikes would be presented with a similar patter 
of highlighted radio buttons as determined by their natural co-varia-
tion in the sampled population; and other two wheeled vehicles would 
occur with an overlapping (but less similar) pattern of radio buttons.

The participants were explicitly directed to learn patterns of 
covariation, and that learning was demonstrated through a series 
of benchmark learning tests. These benchmark tests demonstrated 
that participants have derived at least some of the covariation struc-
ture. Following the benchmark tests, the participants were given a 
series of Final meaning tests designed to measure the extent to which 
meaning can be derived from the covariation structure. For example, 
participants were asked to choose the domain of the examples from 
amongst choices such as two-wheeled vehicles and celestial bodies.

In the Control condition, participants proceeded immediately to 
the Final meaning tests, and they were told to make their best, edu-
cated guesses on the tests. Thus, participants in the control condition 
had no opportunity to learn the covariance structure of the 102 exem-
plars before the Final meaning tests.

If the strong covariation claim is correct, then participants in the 
Learning condition, who have demonstrably learned part of the cov-
ariation structure, ought to be more successful on the Final meaning 
tests than the participants in the Control condition.

Experiment 2 was similar except that the majority of the radio 
buttons were accompanied by the verbal labels (much as in Figure 1). 
Given that the majority of the examples and properties were readily 
identified, this experiment is closer to the cases of both reading and 
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perceptual observation in which the majority of the input is read-
ily identifiable. Then, the theoretical question becomes, can people 
use the learned covariation to enhance their domain knowledge and 
thereby induce the meaning of the properties (radio buttons) that are 
not identified.

Experiment 1
Experiment 1 has three goals. The first is to produce clear evi-

dence that people can learn about covariation of unnamed symbols. 

Table 1. Cross categorization of feature types and relations used in the experi-
ments

Relations
ISA (category) Parts Properties How changes

Abstract 
(Categories)

Two-wheeled*
Motorized
Road bike*
Mountain bike*
Recumbent bike
Scooter
Motorcycle*
Moped

Abstract 
(Features)

Inexpensive* Can go a short 
distance
Can go a 
medium 
distance*
Can go a long 
distance
Gets flat tires
easily 
Disassembled 
easily*
Can carry 
another person

Visible Chain visible
Mirror*
Red light in 
back
Keys needed

Not achromatic*
Used on 
sidewalk*

Auditory Noisy* 
Haptic (touch) Smooth tires Hot

Not heavy*

Proprioceptive
(body position)

Legs still*
Sit upright
Lean forward*
Recumbent

* Features that were labeled during learning in Experiment 2

F
ea

tu
re

 T
yp

es
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The second goal is to determine if meaning can be inferred from the 
learned covariation structure. The third goal is to determine whether 
naming some of the symbols allows people to use the covariation 
structure to infer the meaning of the other symbols (cf. Goldstone 
et al. 2005).

We began by selecting a semantic domain familiar to the student 
participants in our experiments, namely, the domain of two-wheeled 
vehicles. Then, over the course of several weeks we made quasi-ran-
dom observations at various locations on campus resulting in 102 
instances of the domain, including 20 road bicycles (e.g., those with 
downward curving handlebars), 30 mountain bicycles, 7 recumbent 
bicycles, 7 leg-powered scooters, 11 motorcycles, and 26 mopeds. We 
will refer to these five types of vehicles as five item classes (the termi-
nology used for the participants). We coded each example of an item 
class on 29 binary features that could be cross-classified by mode of 
observation (e.g., auditory or visual) and type of relation between the 

Figure 1. Screen shot of the user interface showing the names of the items and 
features. The computer program selected the item class of moped and the parti-
cular example (23). The participant has selected the ISA category relation and 
the categories corresponding to a moped are highlighted. Note: In Experiment 
1, none of the item class names or feature names was visible during learning; in 
Experiment 2, four of the item names and 14 of the feature names were visible.
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vehicle and the feature. These features and the cross-classification 
are given in Table 1. The four relations we used are those used by 
Rumelhart (1990) and Rogers and McClelland (2004) in their simula-
tions of semantic memory.

We constructed a user interface illustrated in Figure 1. Note, 
however, that in the main part of the experiment, most of the specific 
verbal labels next to the radio buttons (e.g., road bike, inexpensive, 
noisy) were not present. However, the interface did label the groups 
of radio buttons (as in Figure 1) using the labels Item class, Relations, 
Category features, Abstract features, Visible features, Hearable fea-
tures, Touchable features, and Body position features. In addition, 
the names of the relations (ISA category, parts, properties, and how 
changes) were displayed.

Participants in the Learning condition were specifically instruct-
ed to learn which features, that is, which radio buttons, tended to 
occur together. Learning preceded by having the participant click 
on the Next Item button. The computer would randomly select one 
of the 102 exemplars, display an example number (e.g., the number 
corresponding to a particular road bike), and display the features 
corresponding to that example for one of the relations (e.g, the ISA 
relation). For example, if the computer chose example 23 from class 5 
(moped), and the ISA relation was selected, then the computer would 
highlight Category radio buttons corresponding to two-wheeled (acti-
vated for all items), motorized (activated for motorcycles and mopeds), 
and moped (activated for all examples of mopeds). If the participant 
then choose the relation Parts, the computer would highlight visible 
feature radio buttons 3, 4, and 5 corresponding to mirror, red-light in 
back, and keys needed, assuming that these features did occur for the 
specific moped that contributed to example 23. Participants were free 
to select different relations for the particular example (e.g., example 
23 of Moped) to study all of the properties for that example, or they 
could select the next item (by clicking on the Next Item button) at any 
time. Participants had unlimited time to study.

The learning of at least part of the covariance structure was 
ensured by having participants study until two types of tests were 
passed. On each trial of the ISA test, both an item class radio button 
was highlighted and the ISA category radio button was highlighted. 
The computer program also highlighted a selection of category radio 
buttons. Either all of the category radio buttons were correct (that 
is, the hidden labels described the item class and these radio buttons 
had been presented with each example from this item class) or one 
was changed. The participant made a decision as to whether all the 
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selected categories were correct or not. There were 12 trials on the 
ISA test, two for each item class, with one trial containing correct 
categories and the other trial an incorrect category. To pass the ISA 
test, the participant had to make at least nine correct decisions. If the 
participant had fewer than nine correct, then he or she was forced to 
study again before retaking the test.

After meeting the ISA test criterion, the participant was given 
the Feature test. On each trial of this test, an item class was high-
lighted as well as all of the correct category radio buttons. The partic-
ipant would then cycle through the other relations (parts, properties, 
and changes). For each relation, either the correct features (radio but-
tons) were highlighted, or one was changed. The participant was to 
determine if all of the highlighted radio buttons were correct. Again, 
the criterion was nine correct out of twelve trials. If the criterion was 
not met, then the participant was forced to study again.

Meeting both the ISA test and Feature test criteria ensures that 
the participant has learned a good deal about the covariance struc-
ture. At this point, a series of five Final tests (Domain, Item 4, Item 
5, Change, and Part) were given to determine whether or not the 
participant could infer meaning from the covariance relations. For 
the Domain test, the participant was told that he or she a) had been 
studying a coherent semantic domain, b) was to indicate which of six 
choices was the domain studied and c) was to give a confidence rating 
on a four-point scale ranging from guessing to positive. The domain 
choices consisted of two natural, non-biological categories (celestial 
objects and geological features), two natural, biological categories 
(mammals and single-celled organisms), and two artifact catego-
ries (furniture and two-wheeled vehicles). The dependent variables 
were the choice made, confidence in the choice, and the time taken 
to make the choice. Although we cannot be sure, it is unlikely that 
the distractor categories have the same covariance structure as two-
wheeled vehicles. Thus, if covariance structure allows the induction of 
meaning on the basis of structure, the choice of two-wheeled vehicles 
should be obvious.

Following the Domain test, the participants were shown the 
names of four of the item classes (all but moped and scooter), as well 
as the names of 24 of the 29 buttons (not displayed were: motorized, 
moped, scooter, easily gets flat tires, and keys needed). At this point, 
the meaning of the majority of radio buttons that contributed to the 
covariance structure becomes available. Thus, the question of inter-
est is whether the meanings of those buttons along with the learned 
covariance structure can be used to determine the meaning of the 
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remaining, unnamed, buttons. For the Item 4 Final test, participants 
were asked to pick the name of the fourth item class (scooter) from six 
choices that included three human-powered vehicles (scooter, skate-
board, tandem bicycle) and three motorized vehicles (moped, Segway, 
bicycle with motor). The dependent variables were the probability of 
selecting from the correct category (human-powered), the confidence, 
and the time to make the selection. For the Item 5 Final test, par-
ticipants were asked to pick the name of the fifth item class (moped) 
from the same choices.

For the Change Final test, participants were given the names 
of all of the item classes, and all of the categories so that only two 
buttons remained unnamed. The participant was asked to select the 
name of the missing change button (easily gets flat tires) from among 
three features typical of human powered vehicles (easily gets flat 
tires, easily falls on ice, and easily raise or lower seat) and three fea-
tures typical of motorized vehicles (new registration required yearly, 
oil is added, and can run out of gas). The dependent variables were 
the probability of selecting a name from the correct category (human-
powered), confidence, and time to make the decision.

On the Part Final test, the participants were asked to select the 
name of the part button (keys needed) from among three parts typical 
of human-powered vehicles (curved handlebars, basket, thin spokes) 
and three parts typical of motorized vehicles (keys needed, speedom-
eter, exhaust pipe). The dependent variables were the probability of 
selecting a name from the correct category (motorized), confidence, 
and time to make the decision.

The performance on these five Final tests for participants in the 
Learning condition was compared to performance of participants in a 
Control condition. Initially control participants were treated identi-
cally to the participants in the Learning condition (see procedure). 
However, instead of studying the covariance structure, these partici-
pants were given special instructions and then proceeded immediate-
ly to the Final tests. The special instructions were:

You have been chosen to participate in a special version of this 
experiment. Other students study the item classes and features. 
They then take the same Final test that you will take shortly. As a 
special participant, your job is to help us to estimate the probabil-
ity of educated guessing on the Final test. Because, you have not 
studied anything, your answers will have to be educated guesses. 
In what sense might your answers be ‘educated?’ There are several 
clues that you might use in making your guesses. For example: You 
are a college student. You are in an experiment. You know that the 
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item classes are not trees or fish [These two classes were examples 
used in the instructions that all participants received, and all par-
ticipants knew that these were not the semantic domain studied.] 
From these hints and others, you may be able to deduce the correct 
answers, or at least eliminate some of the obviously wrong answers. 
Why should you bother? Why not just respond randomly? There are 
five questions on the final test. For each one you answer correctly, 
you will earn a bonus of $1. If you get all five correct, you will earn 
an additional bonus of $5. We hope that this money will motivate 
you to make educated guesses rather than random guesses.

If learning the covariance structure of a set of stimuli a) can be used 
to infer the semantic domain or b) can be used in conjunction with named 
features (e.g., the 27 of 29 features names provided after the Domain 
test), then the participants in the Learning condition should do substan-
tially better than those in the Control condition.

Method
The 91 participants were students enrolled in introductory psychol-

ogy classes at the University of Wisconsin – Madison. Of these, 33 par-
ticipants were randomly assigned to the Control condition. A total of 58 
participants were assigned to the Learning condition, and of this total, 43 
completed the experiment. The remaining 13 elected to discontinue the 
experiment after repeated failures on the ISA or Feature tests. Only data 
from the 76 participants who completed the experiment are reported.

Procedure
Participants in both the Learning and Control conditions were 

treated identically at first. The computer-controlled instructions 
introduced the participants to the interface using three, named 
item classes: pine tree, maple tree, and trout. The 29 features were 
selected to fit these items (e.g., has leaves, grows, can be eaten). The 
instructions explained how features could be cross-classified by “how 
a person comes to know a feature” such as through vision and touch, 
and “how they (the features) relate to the item” such as categories and 
parts. The participants were encouraged to observe how some fea-
tures tend to occur together, such as “living thing” (a category feature) 
and “grows” (a change feature). They were also encouraged to attend 
to patterns of covariation rather than specific examples “It would be 
very difficult to learn all of the features for all of the examples in this 
experiment, so your goal should be to develop some general ideas, 
such as all living pine trees have needles, all living maple trees have 
leaves, but not needles.” At this point, the names of the example item 
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classes and features were erased from the computer screen, and the 
participants were instructed:

Of course, you already know a lot about pine trees, maple trees, and 
fish. So, in this experiment you are not going to know the names 
of the items or the names of their features! (If you want to see the 
example features again, use the Previous button.) Instead, your goal 
is to learn things such as: For Item class 1, ISA categories are 1 & 
2, and features 14 & 20 go together. For Item class 2, ISA categories 
are 1 & 3, and features 17 & 18 go together.

The participants were encouraged to explore the interface by 
clicking on the Next Item button and the relations buttons and observ-
ing the corresponding features. The participants were instructed fur-
ther that the item classes they were studying were not fish or trees 
and that all of the names of the buttons differed from those observed 
previously. To begin the formal study, the participant clicked on a 
button labeled Begin.

For participants in the Control condition, on clicking the Begin 
button, they received further instructions (those quoted above) and 
then moved immediately to the Final tests.

For participants in the Learning condition, on clicking the Begin 
button, they could begin studying the items and relations. After 
studying at least six examples, a participant was given the option of 
further study or of proceeding to the ISA test. There were 12 trials on 
the ISA test, two for each item class. One trial for the item class was 
correct (all of the categories were correct) and one trial for the item 
class was incorrect (one of the category features was incorrect). If the 
participant did not get at least 75% correct on the ISA test, he or she 
was directed to restudy the items. He or she had to study at least six 
examples before being able to re-take the ISA test. This procedure 
continued until the ISA test criterion was met, or the participant 
asked to be excused from the experiment.

Once the ISA test criterion was met, the participant was given 
the Feature test. There were 12 trials on the Feature test, two for 
each item class, and one trial was correct and the other incorrect. On 
incorrect trials, the computer randomly picked a relation to modify 
(e.g., part relation) and randomly chose a radio button of that relation 
type (e.g., another part) to substitute for the correct radio button. If 
the participant did not get at least 75% correct on the Feature test, 
he or she was directed to restudy the items. He or she had to study 
at least six examples before being able to re-take the test. This pro-
cedure continued until the Feature test criterion was met, or the par-
ticipant asked to be excused from the experiment.
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After meeting the Feature test criterion, the participant was 
given the series of five Final tests as previously described. After the 
Domain test, the domain was revealed along with the names of four 
of the six item classes and 24 of the 29 features. The participant was 
then asked to select the names of the remaining two item classes 
(Item 4 and Item 5 Final tests) and the remaining two features 
(Change Feature Final test and Part Feature Final test). Although 
the items tests always preceded the feature tests, within each type of 
test the order of testing (e.g., the order of Items 4 and 5) was random-
ly determined for each participant.

Results
The extent of study, as well as performance on the ISA and 

Feature tests, are indices of the degree to which participants in the 
Learning condition mastered the covariance structure of the stimuli. 
On average, participants clicked 139 (SD = 113) times on the Next 
Item button and 143 (127) times on different relations. On average, 
participants spent 32.4 minutes (11.5 min) studying (excluding time 
spent on instructions and the Final tests). Participants needed an 
average of 3.00 (2.5) attempts to meet the ISA test criterion, and the 
average number correct on the last ISA test was 9.93 (.91) out of 12. 
Participants needed an average of 8.05 (7.62) attempts to meet the 
Feature test criterion, and the average number correct on the last test 
was 9.49 (.80). These data testify to an impressive amount of study 
and accomplishment.

Clearly, people can learn something like the covariance struc-
ture of a set of ungrounded stimuli, the radio buttons. Nonetheless, 
the question remains as to whether that learning can be a source 
of meaning. To answer that question, we turn to the data from the 
Final tests. Two caveats are required, however. First, the data from 
the Learning condition can only be interpreted in relation to the 
data from the Control condition. The reason is that it is unlikely that 
the six choices offered on the Final tests are all equally attractive. 
Thus, the baseline or guessing rate can only be determined from the 
Control condition. The second caveat is that it seems unreasonable 
to expect the participants in the Learning Condition to be able to 
infer specific item classes and features from the covariance struc-
ture. Consequently, except for the Domain test, we scored whether or 
not the participant selected a choice within the appropriate class of 
motorized or non-motorized vehicles.

The results from the various Final tests are given in Table 2. For 
the Domain test, can the participants in the Learning condition select 
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the correct domain (two-wheeled vehicles) more accurately than par-
ticipants in the Control condition? In fact, just the opposite occurred, 
although the difference was not statistically significant, χ2 (1) = 1.43. 
There was not a significant differences in the confidence of the choic-
es, F(1, 74) =.02.

Because of the positive skew in the selection times, the data were 
transformed into logarithms before the statistical analyses. The data 
reported in Table 2 are the means of the logarithms transformed back 
into seconds. The difference between the mean selection times was not 
significant, F(1,74) = 2.74. Nonetheless, the times are interesting for 
several reasons. First, in both conditions, the participants took a con-
siderable amount of time to make the choice; apparently, they treated 
the task seriously. Second, the times provide little or no evidence that 
the participants in the Learning condition were able to solve the task 
by simply referring to a semantic memory. Instead, judging from the 
length of time required, it would appear that participants in both con-
ditions were applying some sort of reasoning strategy.

For each participant, we determined if he or she chose an item 
from the correct category (motorized or not) for Items 4 and 5, and 
then we obtained the proportion correct out of 2. The difference 
between the conditions (see Table 2) was not significant, F(1, 74) 
=.12, nor was the difference between the confidence ratings signifi-
cant, F(1, 74) =.57. However, the participants in the Learning condi-
tion took less time to make their choices than did the participants 
in the Control condition, F(1, 74) = 4.06. Once again, the times are 
quite informative. The long durations are more consistent with some 
sort of reasoning strategy rather than direct consultation of semantic 
memory.

The last two tests involved identifying the Change relation radio 
button easily gets a flat tire and the Parts relation radio button keys 
needed. For each participant, we determined if he or she chose an 
item from the correct category (motorized or not) for the two tests, 
and then we obtained the proportion correct out of 2. There were no 
significant differences in the proportions correct or confidences, Fs 

Table 2. Means (and SDs) from Experiment 1 Final tests

Domain test Item tests Feature tests
L C L C L C

Correct .05 (.21) .12 (.33) .50 (.38) .47 (.39) .59 (.35) .53 (.30)
Confidence 2.00 (.90) 2.03 (1.13) 1.92 (.74) 2.04 (.71) 2.12 (.76) 2.24 (.75)
Time (sec) 35.47 44.85 33.96 43.70 32.39 51.37

L = Learning condition; C = Control condition
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< 1. As with the Item tests, participants in the Learning condition 
tended to make their choices faster, F(1, 74) = 10.24.

Discussion
The data are clear in three respects. First, people can learn at 

least part of the covariance structure of ungrounded symbols. This is 
demonstrated by performance on the ISA and Features tests. Second, 
that covariance structure cannot be used to determine the domain of 
study; participants in the Learning condition were no more accurate 
on the Domain test than participants in the Control condition. Third, 
even after most of the radio buttons were named, people cannot easily 
use the covariance structure to determine even a coarse categoriza-
tion (motorized or not) for the unnamed buttons.

Experiment 2
In Experiment 1, the names were revealed only after the covari-

ance structure was learned. Perhaps the covariance structure is more 
useful when some of the items in the structure are named while learn-
ing takes place. In that way, an already known meaning structure can 
be updated on the basis of new learning. Thus, in Experiment 2, three 
of the item classes (road bike, mountain bike and motorcycle) were 
named throughout the study period, as were 14 of the 29 features (see 
Table 1). Thus, if learning the covariance structure is useful when 
the names of some of the radio buttons are known, participants in 
the Learning condition should demonstrate a clear superiority on the 
Final tests compared to participants in the Control condition. In addi-
tion, we might expect the selection times to be much shorter for the 
Learning condition.

Experiment 2 addresses many of the criticisms that could be 
leveled at the methodology of Experiment 1. One such concern is 
that radio buttons are an odd representational medium. Perhaps 
one needs to develop some skill in the representational medium in 
order to attend to and use the covariance structure. Naming half of 
the radio buttons makes the task closely analogous to a reading task 
in which some of the words are unknown. In the following example, 
each sentence begins with the (always available) name of a relation or 
name of a group of radio buttons. The sentence continues with names 
of the labeled radio buttons and ends with the names of the unlabled 
buttons. For a typical moped (not named in Experiment 2), reading 
the display results in:

Category Features: is a two-wheeled vehicle; is not a Road bike; 
is not a motorcycle; is A (A corresponds to “motorized,” an unnamed 
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radio button, in Figure 1); is not B; is not C; is not D; is E. Abstract 
Features: is expensive; can travel a medium distance; cannot be eas-
ily disassemble; can F; can G; cannot H; can I. Visible features: has 
a mirror; is colored; is not used on a sidewalk, does not have J; does 
have K; does have L. Audible features: is noisy. Touch features: is 
heavy; does not have M; is N. Body Part features: legs are still; do not 
lean forward; has O; not P.

Thus, the input is substantially similar to what is given the LSA 
program. By tracking the covariation and computing dimensional 
reduction, the LSA program can determine similarities (that is simi-
lar co-occurrence structures) between unnamed features such as A, 
B, and C and named features such as road bike. The question is: Can 
people do the same?

Finally, one of the supposed benefits of a theory such as LSA is 
that it gives rise to covert concepts based on previously encountered 
covariation structure (and dimensional reduction). For example, 
according to a theory such as LSA, it is possible to infer that mopeds 
do not easily get flat tires (unnamed abstract Change feature H in the 
above listing), based on a moped’s similarity to motorcycles and cars 
which do not get flat tires easily. Given that half of the radio buttons 
are named during learning in Experiment 2, if the strong covariation 
claim is correct, it should be much easier for the participants in the 
Learning condition to map the covariation of H (it occurs with mopeds 
and motorcycles but not with road bikes and mountain bikes) with 
easily gets a flat tire compared to participants in the Control condi-
tion.

Method
A total of 93 participants were randomly assigned to the 

Learning (n = 61) and Control (n = 32) conditions. A total of 21 par-
ticipants in the Learning condition failed to finish the experiment. 
Thus, the data are based on 40 participants in the Learning condi-
tion and 32 participants in the Control condition. The method was 
identical to Experiment 1 except as noted above and except that the 
Domain Final test was eliminated. Because the names of three of the 
item classes were given, the choice of domain (two-wheeled vehicles) 
would be obvious.

Results
On average, Learning condition participants clicked 81.8 (SD = 

78.7) times on the Next Item button, 105.2 (70.2) times on different 
relations, and studied for 28.32 minutes (10.28). Participants needed 
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an average of 2.00 (1.55) attempts to meet the ISA test criterion, and 
the average number correct on the last test was 10.10 (1.01) out of 
12. Participants needed an average of 4.60 (3.06) attempts to meet 
the Feature test criterion, and the average number correct on the last 
test was 9.32 (.57). As in Experiment 1, there is clear evidence that 
the participants in this condition have learned at least some of the 
covariance structure.

The data from the Final tests are presented in Table 3, and in 
many respects, they mirror the data from Experiment 1. For the com-
bined Final tests on Items 4 and 5, there were no significant differ-
ences in proportion correct or confidence, Fs (1, 70) < 1. Although the 
participants in the Control condition did take longer to make a deci-
sion, F(1, 70) = 5.30, it should be noted that the participants in the 
Learning condition took a considerable amount of time. Similarly, for 
the combined Final tests on features and parts, there was not a sig-
nificant difference for proportion correct, F<1, or for confidence, F(1, 
70) = 1.47, but the participants in the Control condition took longer to 
make a selection, F(1, 70) = 16.95. Apparently, even when about half 
of the radio buttons are named throughout the learning of the cov-
ariance structure, that structure is of little use in classifying whether 
the other radio buttons correspond to human-powered or motorized 
vehicles.

Table 3. Means (and SDs) from Experiment 2 Final tests

Item tests Feature tests
L C L C

Correct .59 (.39) .62 (.31) .64 (.32) .59 (.37)
Confidence 2.12 (.74) 1.95 (.78) 2.01 (.76) 2.23 (.79)
Time (sec) 34.90 46.80 31.81 51.64

L = Learning condition; C = Control condition

General Discussion

The experiments were designed to answer three questions: Can 
people learn the covariance structure of ungrounded symbols? Can 
people derive meaning from that covariance structure? When part 
of the covariance structure is named, can people use the covariance 
structure to infer meaning (in this case, classification as human-pow-
ered or motorized) for the unnamed radio buttons? We will consider 
the answer to these questions, and then discuss two more: If cov-
ariation plays a limited role in acquiring new meaning, how are those 
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meanings acquired? And, what accounts for the impressive relations 
between covariation and meaning that have been documented?

If we can trust the ISA and Feature tests, then the data from 
the experiments provide a clear answer to the first question: People 
can learn at least a portion of the covariance structure of ungrounded 
symbols. Should the ISA and Feature tests be trusted? Not if the tests 
could have been passed by chance. Each test had 12 two-choice ques-
tions. With the probability of answering correctly by chance equal-
ing.5, the probability of getting at least 9 correct is.073. On average, 
participants took about two tries to pass the ISA test. The probability 
of getting at least 9 correct (by guessing) on either the first or second 
test is only.139. Participants needed about five attempts to pass the 
Feature test. If they were guessing, the probability of passing the test 
on any of five tries is still only.312. Thus, given that people succeeded 
in passing these tests, it seems clear that they have learned some-
thing about the relations among the radio buttons.

The answer to the second question also seems clear: People were 
unable to map the covariance structure of the unnamed symbols (the 
radio buttons) to the correct general domain (two-wheeled vehicles). 
Nonetheless, there are several constraints on this conclusion. First, 
we used only one domain. Perhaps it has a covariance structure that 
is difficult to map onto semantic memory structures, or we picked fea-
tures that are not features normally attended.

The experiments do seem to meet the conditions needed to test 
Landauer & Dumais (1997). Namely, words in texts are to a compu-
ter program no different from a collection of radio buttons (abstract 
symbols that are presented visually), and the operation of the theory 
is to compute the covariances (and dimensional reduction) among 
those symbols. The theory would work exactly the same if the order 
of the words in each text used as input to LSA were randomized, or 
if each word was replaced by a random number (as long as the same 
random number was used each time that word was presented in any 
text). In fact, the theory would work exactly the same if it were given 
a coding representing the spatial location of each radio button in the 
user interface of the two experiments. That is, the LSA model would 
note the frequency that each radio button occurs with each example 
(treating an example as equivalent to a text), and the singular value 
decomposition could be applied to the resulting matrix.

Experiment 2 provides an even stronger test of the LSA-type of 
mechanism. In that experiment, much of the information was pre-
sented verbally (the named radio buttons) that could be read much 
like a paragraph of the sort that goes into establishing the matrixes 
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used in LSA (see the sample in the Introduction to Experiment 2). 
Nonetheless, on the Final tests participants in the Learning condition 
were unable to assign the correct category (e.g., human-powered) to 
the radio buttons.

Two arguments against accepting these results as tests of the 
strong covariance claim remain. One could argue that the covariance 
structure formed from the 102 examples used in the experiments is 
unlikely to match the covariance structure for a particular partici-
pant. At the very least, that participant may own a two-wheeled vehi-
cle and the vast amount of experience with that vehicle will perturb 
the structure. However, if this argument were to be made, theories 
such as LSA could never work: The probability that the covariance 
structure derived from words in texts would match the particulars of 
an individual’s experience would be infinitesimally small.

The second argument is that much of the learning accomplished 
by LSA and people is implicit. In these experiments, participants were 
explicitly told to learn covariance relations. Indeed, it is probably 
worthwhile devising an implicit form of the experiments. However, 
even if the results were quite different and in line with the strong 
covariance claim, the results of the current experiments would be 
telling. That is, they would demonstrate that separate acquisition 
mechanisms and data structures are required for implicit and explicit 
learning via covariation.

The answer to the third question (can covariance be used when 
some of the symbols are named) is also clear. In Experiment 1, the 
majority of the symbols were named after the Final Domain test. 
Nonetheless, participants in the Learning condition could not use that 
knowledge in conjunction with covariance knowledge to identify (or 
even grossly classify) the remaining radio buttons. In Experiment 2, 
about half of the symbols were named during learning. Nonetheless, 
participants were unable to use the learned covariance structure to 
classify the remaining symbols.

If covariance structure is not the source of concept acquisition 
and demonstrable fast mapping of linguistic structures to concepts 
(e.g., Casenhiser & Goldberg 2005), what else might be needed? To 
expand on an example from Landauer & Dumais, if we already know 
a lot about rabbits, how is it that we can then learn a lot about hares 
from simply being told that hares are like large rabbits with elongat-
ed hind legs or even by encountering the word “hare” in the same lin-
guistic contexts as the word “rabbit?” Our proposal is that it is not the 
covariation that gives the meaning, but that the covariation provides 
the opportunity for creating embodied representations of the objects 
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and events that do carry meaning. For example, when told that a 
hare is like a rabbit with long back legs, we use embodied knowledge 
about rabbits, such as their size, shape, and haptic qualities to simu-
late or create a likely representation of hares. [cf., Barsalou’s (1999) 
idea of creating a simulator.] From this simulation, it is possible to 
derive affordances or inferences, such as the fact that hares run fast 
given the long hind legs. Consistent with this sketch, Smith (2005) 
has demonstrated that toddlers extend the name of an object to other 
objects that the toddler can manipulate in similar ways. In other 
words, it is not simply the covariation of hares and long hind legs that 
matters. Instead, what matters is how those hind legs affect percep-
tion systems and how those hind legs interact with action systems. 
This type of information is not inherent in covariation structure.

On the other hand, it is worth reiterating that embodied accounts 
of meaning value covariation because it is the covariation that provides 
the opportunity for comparison and construction of embodied simula-
tions. Also, it is covariation that allows for the sort of learning identi-
fied by Onnis et al. (this volume). When the verb to cause is consist-
ently paired with negative situations, then the stage is set for learning 
an association between the verb and the emotional reaction generated 
by directly experiencing the negative situation, observing it, or simulat-
ing the experience during language comprehension. Thus, findings by 
Onnis et al, may reflect previous associative learning between the verb 
to cause and an experienced emotion rather than the on-line computa-
tion and use of statistics. (See Havas et al. 2007, for a demonstration 
of how the manipulation of emotional experience can affect language 
processing.) Thus from an embodied perspective, covariation is very 
useful, even if covariation alone has little to do with meaning.

If covariation by itself does not play a major role in determin-
ing meaning, what accounts for the impressive relations between 
aspects of covariation and meaning? We think that there are two 
likely answers. First, covariation does provide opportunities for learn-
ing, such as the opportunities for creating embodied mental models 
of hares from models of rabbits. Second, as we suggested earlier, the 
relation between covariation and meaning may arise from a reversal 
of the causal arrow (Zwaan & Madden 2005). For example, Landauer 
& Dumais, propose that the meaning of Word A is determined by its 
covariation with Words B, C and so on. In contrast, we think that 
Word A happens to occur with Words B, C and so on because those 
words are useful in describing the actions and events to which Word 
A refers. That is, meaning causes word covariance structure, not the 
other way around.
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