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Abstract  
The paper reports on the behavior of a Kohonen map of the mental lexicon, 

monitored through different phases of acquisition of the Italian verb system. 
The reported experiments appear to consistently reproduce emergent global 
ordering constraints on memory traces of inflected verb forms, developed 
through principles of local interactions between parallel processing neurons.  

1. Introduction  
Over the last 15 years, considerable evidence has accrued on the critical 

role of paradigm-based relations as an order-principle imposing a non-local 
organising structure on word forms memorised in the speaker’s mental lexicon, 
facilitating their re tention, accessibility and use, while permitting the 
spontaneous production and analysis of novel words. A number of theoretical 
models of the mental lexicon have been put forward to deal with the role of 
these global constraints in i) setting an upper bound on the number of possible 
forms a speaker is ready to produce (Stemberger and Car-stairs, 1988), ii) 
accounting for reaction times in lexical decision and related tasks (Baayen et al. 
1997; Orsolini and Marslen-Wilson, 1997 and others), iii) explaining 
production errors by both adults and children (Bybee and Slobin, 1982; Bybee 
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and Moder; 1983; Orsolini et al., 1998) and iv) accounting for human 
acceptability judgements and generalisations over nonce verb stems (Say and 
Clahsen, 2001). While most of these models share some core assumptions, they 
appear to largely differ on the role played by lexical relations in word storage, 
access and processing. According to the classical view (e.g. Taft, 1988) the 
relationship between regularly inflected forms is directly encoded as lexical 
procedures linking inflectional affixation to separately encoded lexical roots. Ir-
regular word forms, on the other hand, are stored in full (Prasada and Pinker, 
1993). In contrast to this view, associative models of morphological processing 
claim that words in the mental lexicon are always listed as full forms, 
establishing an in terconnected network of largely redundant linguis tic data 
reflecting similarities in meaning and form (Bybeee, 1995).  

Despite the great deal of experimental evidence now available, however, we 
still seem to know too little of the dynamic interplay between morphological 
learning and the actual working of the speaker’s lexicon to draw conclusive 
inferences from experimental findings. Associative models, for example, are 
generally purported to be unable to capture morpheme-based effects of 
morphological storage and access. Thus, if humans are shown to access the 
mental lexicon through morphemes, so the argument goes, then associative 
models of the mental lexicon cannot be true. In fact, if associative models can 
simulate emergent morpheme-based effects of lexical organisation through stor -
age of full forms, then this conclusion is simply unwarranted.  

We believe that computer simulations of morphology learning can play a 
role in this dispute. However, there have been comparatively few attempts to 
model the way global ordering pr inciples of lexical organisation interact with 
(local) proc essing strategies in morphology learning. In the present paper, we 
intend to simulate a biologically-inspired process of paradigm-based self -
organisation of inflected verb forms in a Kohonen map of the Italian mental 
lexicon, built on the basis of local processes of memory access and updating. 
Before we go into that, we briefly overview relevant machine learning work 
from this perspective.  

2. Background  
Lazy learning methods such as the nearest neighbour algorithm (van den 

Bosch et al., 1996) or the analogy-based approach (Pirrelli and Federici, 1994; 



Pirrelli and Yvon, 1999) require full storage of supervised data, and make on-
line use of them with no prior or posterior lexical struc turing. This makes this 
class of algorithms flexible and efficient, but comparatively noise-sensitive and 
rather poor in simulating emergent learning phenomena. There is no explicit 
sense in which the system learns how to map new exemplars to already 
memorised ones , since the mapping function does not change through time and 
the only incremental pay-off lies in the growing quantity of in formation stored 
in the exemplar data-base. 

Decision tree algorithms (Quinlan, 1986), on the other hand, try to build the 
shortes t hierarchical structure that best classifies the training data, using a 
greedy heuristics to select the most discrimina tive attributes near the root of the 
hierarchy. As heuristics are based on a locally optimal splitting of all training 
data, adding new training data may lead to a dramatic reorganisation of the 
hierarchy, and nothing is explicitly learned from having built a decision tree at 
a previous learning stage (Ling and Marinov, 1993). 

To tackle the issue of word structure more squarely, there has been a recent 
upsurge of interest in global paradigm-based constraints on morphology 
learning, as a way to minimise the range of inflectional or derivational endings 
heuristically inferred from raw training data (Goldsmith, 2001; Gaussier, 1999; 
Baroni, 2000). It should be noted, however, that global, linguistically -inspired 
constraints of this sort do not interact with morphology learning in any direct 
way. Rather, they are typically used as global criteria for optimal convergence 
on an existing repertoire of minimally redundant sets of paradigmatically 
related mor phemes. Candidate morpheme -like units are acquired independently 
of paradigm-based constraints, solely on the basis of local heuristics. Once 
more, there is no clear sense in which global constraints form integral part of 
learning. 

Of late, considerable attention has been paid to aspects of emergent 
morphological structure and continuous compositionality in multi-layered 
perceptrons. Plaut et al. (1996) show how a neural network comes to be 
sensitive to degrees of compositionality on the basis of exposure to examples of 
inputs and outputs from a word-reading task. Systematic input-output pairs tend 
to establish a clear one -to-one correlation between parts of input and parts of 
output representations, thus developing strongly compositional analyses. By the 
same token, a network trained on inputs with graded morphological structure 



develops representations with corresponding degrees of compositionality 
(Rueckl and Raveh, 1999). It must be appreciated that most such approaches to 
incremental compositionality are task-oriented and highly supervised. 
Arguably, a better-motivated and more explanatory approach should be based 
on self-organisation of input tokens into morphologically natural classes and 
their time-bound specialisation as members of one such class, with no external 
supervision. Kohonen’s Self-Organising Maps (SOMs) (Kohonen, 1995) 
simulate self-organisation by structuring input knowledge on a (generally) two-
dimensional grid of neurons, whose activation values can be inspected by the 
researcher both instantaneously and through time. In the remainder of this paper 
we show that we can use SOMs to highlight interesting aspects of global 
morphological organisation in the learning of Italian conjugation, incrementally 
developed through local interactions between parallel processing neurons.  

3. SOMs  
SOMs can project input tokens, represented as data points of an n-

dimensional input space, onto a generally two-dimensional output space (the 
map grid) where similar input tokens are mapped onto nearby output units. 
Each output unit in the map is associated with a distinct prototype vector, 
whose dimensionality is equal to the dimensionality of input vectors. As we 
shall see, a prototype vector is an approximate memory trace of recurring 
inputs, and plays the role of linking its corresponding output unit to a position 
in the input space. Accordingly, each output unit takes two positions: one in the 
input space (through its prototype vector) and one in the output space (its co-
ordinates on the map grid). 

SOMs were originally conceived of as computer models of somatotopic 
brain maps. This explains why output units are also traditionally referred to as 
neurons. Intuitively, a prototype vector represents the memorised input pattern 
to which its associated neuron is most sensitive. Through learning, neurons 
gradually specialise in selectively be ing associated with specific input patterns. 
Moreover, memorised input patterns tend to cluster on the map grid so as to 
reflect natural classes in the input space. 

These interesting results are obtained through it erative unsupervised 
exposure to input tokens. At each learning step, a SOM is exposed to a single 
input token and goes through the following two stages: a) competitive neuron 



selection, and b) adaptive adjustment of prototype vectors. As we shall see in 
more detail in the remainder of this section, both stages are local and 
incremental in some crucial respects.1 

3.1 Stage 1: competitive selection  
Let vx be the n-dimension vector representation of the current input. At this 

stage, the distance be tween each prototype vector and vx is computed. The 
output unit b that happens to be associated with the prototype vector vb closest 
to vx is selected as the best matching unit. More formally:  

 
{ }ixbx vvvv −≡− min , 

where ¦ vx – vi¦  is also known as the quantization error scored by vb 
relative to vx. Intuitively, this is to say that, although b is the map neuron 
reacting most sensitively to the current stimulus, b is not (yet) perfectly attuned 
to vx. 

Notably, the quantization error is a local distance function, as it involves 
two vector representations at a time. Hence, competitive selection is blind to 
general structural properties of the input space, such as the comparative role of 
each dimension in discriminating input tokens. This makes competitive 
selection prone to errors due to accidental or spurious similarity between the 
input vector and SOM prototype vectors. 

3.2 Stage 2: adaptive adjustment  
After the winner unit b  is selected at time t, the SOM locally adapts 

prototype vectors to the current stimulus. Vector adaptation applies locally, 
within a kernel area of radius r, centred on the position of b on the map grid. 
Both vb(t) (vb at time t) and the prototype vectors associated with b’s kernel 
units are adjusted to make them more similar to vx(t) (vx at time t). In particular, 
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for each prototype vector vi in b’s kernel and the input vector vx, the following 
adaptive function is used  

 
[ ])()()()1( tvtvhtvtv ixbiii −+=+ , 

where hbi is the neighbourhood kernel centred around the winner unit b at 
time t, a non-increasing function of both time and the distance between the 
input vi and the winner vector vb. As learning time progresses, however, hbi 
decreases, and prototype vector updates become less sensitive to input con-
ditions, according to the following: 

 
)(),()( ttllhth ibbi α⋅−= , 

where lb and li are, respectively, the position of b and its kernel neurons on 
the map grid, and a(t) is the learning rate at time t, a monotonically decreas ing 
function of t. Interaction of these functions simulates effects of memory 
entrenchment and proto-typicality of early input data.

3.3 Summary  
The dynamic interplay between locality and incrementality makes SOMs 

plausible models of neural computation and data compression. Their sensitivity 
to frequency effects in the distribution of input data allows the researcher to 
carefully test their learning behaviour in different time-bound conditions. 
Learning makes output units increas ingly more reactive to already experienced 
stimuli and thus gradually more competitive for selection. If an output unit is 
repeatedly selected by systematically occurring input tokens, it becomes associ-
ated with a more and more faithful vector representation of a stimulus or class 
of stimuli, to become an attractor for its neighbouring area on the map. As a 
result, the most parsimonious global organisa tion of input data emerges that is 
compatible with a) the size of the map grid, b) the dimensionality of output 
units and c) the distribution of input data. 

This intriguing dynamics persuaded us to use SOMs to simulate the 
emergence of non-local lexical constraints from local patterns of interconnec-
tivity between vector representations of full word forms. The Italian verb 



system offers a particularly rich material to put this hypothesis to the 
challenging test of a computer simulation. 

4. The Italian Verb System 
The Italian conjugation is a complex inflectional system, with a 

considerable number of classes of regular, subregular and irregular verbs 
exhibiting different probability densities (Pirrelli, 2000; Pirrelli and Battista, 
2000). Traditional descriptive grammars (e.g. Serianni, 1988) identify three 
main conjugation classes (or more simply conjugations), characterised by a 
distinct thematic vowel (TV), which appears between the verb root and the 
inflectional endings. First conjugation verbs have the TV -a- (parl-a-re 'speak'), 
second conjugation verbs have the TV -e- (tem-e-re 'fear'), and third 
conjugation verbs -i- (dorm-i-re 'sleep'). The first conjugation is by far the 
largest class of verbs 

 
TYPE EXAMPLE ENGLISH GLOSS 

[isk]-insertion + 
palatalization 

fi»nisko/fi»niSSi /fi»njamo  (I)/(you)/(we) end 

[g]-insertion + 
diphthongization 

»vEngo/»vjEni/ve»njamo  (I)/(you)/(we) come 

ablauting + velar 
palatalization 

»Esko/»ESSi/uS»Samo  (I)/(you)/(we) go out 

[r]-drop + diphthongization »mwojo/»mwori/mo »rjamo  (I)/(you)/(we) die 
 

Table 1. Variable stem alternations in the Italian present indicative. 

 (73% of all verbs listed in De Mauro et al., 1993), almost all of which are 
regular. Only very few 1st conjugation verbs have irregularly inflected verb 
forms: andare 'go', dare 'give', stare 'stay' and fare ‘do, make’. It is also the 
only truly productive class. Neologisms and foreign loan words all fall into it. 
The second conjugation has far fewer members (17%), which are for the most 
part ir regular (around 95%). The third conjugation is the smallest class (10%). 
It is mostly regular (around 10% of its verbs are irregular) and only partially 
productive. 

Besides this macro-level of paradigmatic organisation, Italian subregular 
verbs also exhibit ubiquitous patterns of stem alternations, whereby a change in 
paradigm slot triggers a simultaneous change of verb stem and inflectional 



ending, as illustrated in Table 1 for the present indicative active. Pirrelli and 
Battista (2000) show that phenomena of Italian stem alternation, far from being 
accidental inconsistencies of the Italian morpho-phonology, define stable and 
strikingly convergent patterns of variable stem formation (Aronoff, 1994) 
throughout the entire verb system. The patterns partition subregular Italian 
verbs into equivalence micro-classes. In turn, this can be in terpreted as 
suggesting that inter -class consistency plays a role in learning and may have 
exerted a convergent pressure in the history of the Italian verb system. If a 
speaker has heard a verb only in ambiguous inflections (i.e. inflections that are 
indicators of more than one verb micro-class), (s)he will need to guess, in order 
to produce unambiguous forms. Guesses are made on the basis of frequently 
attested verb micro-classes (Albright, 2002). 

5. Computer simulations  
The present experiments were carried out using the SOM toolbox (Vesanto 

et al., 2000), developed at the Neural Networks Research Centre of Helsinki 
University of Technology. The toolbox partly forced some standard choices in 
the training protocol, as discussed in more detail in the following sections. In 
particular, we complied with Ko-honen’s view of SOM training as consisting of 
two successive phases: a) rough training and b) fine-tuning. The implications of 
this view will be discussed in more detail later in the paper. 

5.1 Input data  
Our input data are inflected verb forms written in standard Italian 

orthography. Since Italian or thography is, with a handful of exceptions, consis -
tently phonological, we expect to replicate the same results with phonologically 
transcribed verb forms. 

Forms are incrementally sampled from a training data set, according to their 
probability densities in a free text corpus of about 3 million words. Input data 
cover a fragment of Italian verb inflection, including, among others, present 
indicative active, future indicative active, infinitive and past participle forms, 
for a total of 10 different inflections. The average length of training forms is 
8.5, with a max value of 18. 

Following Plunkett and Marchman (1993), we assume than the map is 
exposed to a gradually growing lexicon. At epoch 1, the map learns inflected 



forms of the 5 most frequent verb types. At each ensuing epoch, five more verb 
types are added to the training data, according to their rank in a list of 
decreasingly frequent verb types. As an overall learning session consists of 100 
epochs, the map is eventually exposed to a lexicon of 500 verb types, each seen 
in ten different inflections. Although forms are sampled according to their 
corpus distributions, we hypothesize that the range of inflections in which verb 
tokens are seen by the map remains identical across verb types. This is done to 
throw paradigmatic effects in sharper relief and responds to the (admittedly 
simplistic) assumption that the syntactic patterns forming the linguistic input to 
the child do not vary across verb types.  

Each input token is localistically encoded as an 8*16 matrix of values 
drawn from the set {1, -1}. Column vectors represent characters, and rows give 
the random encoding of each character, ensuring maximum independence of 
character vector representations. The first eight columns in the matrix represent 
the first left-aligned characters of the form in question. The remaining eight col-
umns stand for the eight (right-aligned) final characters of the input form. 
 

 



5.2 Training protocol  
At each training epoch, the map is exposed to a total of 3000 input tokens. 

As the range of different inflected forms from which input tokens are sampled 
is fairly limited (especially at early epochs), forms are repeatedly shown to the 
map. Following Kohonen (1995), a learning epoch consists of two phases. In 
the first rough training phase, the SOM is exposed to the first 1500 tokens. In 
this phase, values of a (the learning rate) and neighborhood kernel radius r are 
made vary as a linear decreasing function of the time epoch, from max a = 0.1 
and r = 20 (epoch 1), to a = 0.02 and r = 10 (epoch 100). In the second fine -
tuning phase of each epoch, on the other hand, a is kept to 0.02 and r = 3. 

5.3 Simulation 1: Critical transitions in lexical organisation  
Figures 1 and 2 contain snapshots of the Italian verb map taken at the 

beginning and the end of training (epochs 1 and 100). The snapshots are 
Unified distance matrix (U-matrix, Ultsch and Siemon, 1990) representations of 
the Italian SOM. They are used to visualise distances between neurons. In a U-
matrix representation, the distance between adjacent neurons is calculated and 
presented with different colourings between adjacent positions on the map. A 
dark colouring between neurons signifies that their corresponding prototype 
vectors are close to each other in the input space. Dark colourings thus 
highlight areas of the map whose units react consistently to t he same stimuli. A 
light colouring between output units, on the other hand, corresponds to a large 
distance (a gap) between their corresponding prototype vectors. In short, dark 
areas can be viewed as clusters, and light areas as chaotically reacting cluster 
separators. This type of pictorial presentation is useful when one wants to 
inspect the state of knowledge developed by the map through learning.  

For each epoch, we took two such snapshots: i) one of prototype vector 
dimensions representing the initial part of a verb form (approximately its verb 
root, Figures 1.a and 2.a), and ii) one of prototype vector dimensions 
representing the verb final part (approximately, its inflectional endings, Figure 
1.b and 2.b).  

5.3.1 Discussion  
Data storage on a Kohonen map is a dynamic process whereby i) output 

units tend to consis tently become more reactive to classes of input data, and ii) 



vector prototypes which are adjacent in the input space tend to cluster in 
topologically connected sub-areas of the map.  

Self-organisation is thus an emergent property, based on local (both in time 
and space) principles of prototype vector adaptation. At the outset, the map is a 
tabula rasa , i.e. it has no notion whatsoever of Italian inflectional morphology. 
This has two implications. First, before training sets in, output units are 
associated with randomly initialised sequences of characters. Secondly, 
prototype vectors are randomly associated with map neurons, so that two 
contiguous neurons on the map may be sensitive to very different stimulus pat-
terns. 

Figure 1 shows that, after the first training epoch, the map started by 
organising memorised input patterns lexically, grouping them around their  

(5) roots. Each root is an attractor of lexically related stimuli, that 
nonetheless exhibit fairly heterogeneous endings (see Figure 1.b). 

At learning epoch 100, on the other hand, the topological organisation of 
the verb map is the mirror image of that at epoch 10 (Figures 2.a and 2.b). In 
the course of learning, root attractors are gradually replaced by ending 
attractors. Accordingly, vector prototypes that used to cluster around their 
lexical root appear now to stick together by morpho-syntactic categories such as 
tense, person and number. One can conceive of each connected dark area of 
map 2.b as a slot in an abstract inflectional paradigm, potentially as sociated 
with many forms that share an inflec tional ending but differ in their roots. 

 



 

Figure 3. Average quantization error for an increasing 
number of input verbs  

 

The main reason for this morphological organisation to emerge at a late 
learning stage rests in the distribution of training data. At the beginning, the 
map is exposed to a small set of verbs, each of which is inflected in 10 different 
forms. Forms with the same ending tend to be fewer than forms with the same 
root. As the verb vocabulary grows (say of the order of about 50 different 
verbs), however, the principles of morphological (as opposed to lexical) 
organisation allow for more compact and faithful data storage, as reflected by a 
significant reduction in the map average quantization error (Figure 3). Many 
different forms can be clustered around comparatively few endings, and the 
latter eventually win out as local paradigmatic attractors. 

Figure 4 (overleaf) is a blow-up of the map area associated with infinitive 
and past participle endings. The map shows the content of the last three 
characters of each prototype vector. Since past participle forms occur in free 
texts more often than infinitives, they have a tendency to take a proportionally 
larger area of the map (due to the so-called magnification factor). Interestingly 
enough, past participles ending in -ato occupy one third of the whole picture, 
witnessing the prominent role played by regular first conjugation verbs in the 
past participle in flection. 

Another intriguing feature of the map is the way the comparatively 
connected area of the past participle is carved out into tightly interconnected 



micro-areas, corresponding to subregular verb forms (e.g. corso ‘run’, scosso 
‘shaken’ and chiesto  ‘answered’). Rather than lying outside of the morpho-
phonological realm (as exceptions to the “TV + to” default rule), subregular 
forms of this kind seem here to draw the topological borders of the past 
participle domain, thus defining a continuous chain of morphological family 
resemblances. Finally, by analogy-based continuity, the map comes to develop 
a prototype vector for the non existing (but paradigmatically consistent) past 
participle ending -eto.2 This “spontaneous” overgeneralization is the by-product 
of graded, overlapping morpheme-based memory traces.  

In general, stem frequency may have had a retardatory effect on the critical 
transition from a lexical to a paradigm-based organisation. For the same reason, 
high-frequency forms are eventually memorised as whole words, as they can 
successfully counteract the root blurring effect produced by the chaotic overlay 
of past participle forms of different verbs, which are eventually attracted to the 
same map area. This turns out to be the case for very frequent past participles 
such as stato ‘been’ and fatto ‘done’. As a final point, a more detailed analysis 
of memory traces in the past participle area of the map is likely to highlight sig-
nificant stem patterns in the subregular micro-classes. If confirmed, this should 
provide fresh evidence supporting the existence of prototypical morphological 
stem patterns consistently selecting specific subregular endings (Albright, 
2002). 

5.4 Simulation 2: Second level map  
A SOM projects n-dimensional data points onto grid units of reduced 

dimensionality (usually 2). We can take advantage of this data compression to 
train a new SOM with complex representations consisting of the output units of 
a previously trained SOM. The newly trained SOM is a second level projection 
of the original data points.   

To test the consistency of the paradigm-based organisation of the map in 
Figure 2, we trained a novel SOM with verb type vectors. Each such vector 
contains all 10 inflected forms of the same verb type, encoded through the co-

                                                 
2 While Italian regular 1st  and 3rd conjugation verbs present a thematic vowel in their past 
participle endings (-ato and -ito respectively), regular 2 conjugation past participles (TV -e-) 
end, somewhat unexpectedly, in -uto. 



ordinates of their best-matching units in the map grid of Figure 2. The result of 
the newly trained map is given in Figure 5.  

 

 

5.4.1 Discussion  
Figure 5 consistently pictures the three-fold macrostructure of the Italian 

verb system (section 4) as three main horizontal areas going across the map top-
to-bottom.  

 



 

Figure 5: A second level map 

  
Besides, we can identify other micro-areas, somewhat orthogonal to the 

main ones.The most significant such micro-class (circled by a dotted line) 
contains so-called [g]-inserted verbs (Pirrelli, 2000; Fanciullo, 1998), whose 
forms exhibit a characteristic [g]/0 stem alternation, as in vengo/venite ‘I come, 
you come (plur.)’ and tengo/tenete ‘I have/keep, you have/keep (plur.)’. The 
class straddles the 2nd and 3rd conjugation areas, thus pointing to a convergent 



phenomenon affecting a portion of the verb system (the present indicative and 
subjunctive) where the distinction between 2nd and 3rd conjugation inflections 
is considerably (but not completely) blurred. All in all, Italian verbs appear to 
fall not only into equivalence classes based on the selection of inflectional 
endings (traditional conjugations), but also into homogeneous micro-classes 
reflecting processes of variable stem formation. Identification of the appropriate 
micro-class is a crucial problem in Italian morphology learning. Our map 
appears to be in a position to tackle it reliably.  

Note finally the very particular position of the verb stare ‘stay’ on the grid. 
Although stare is a 1st conjugation verb, it selects some 2nd conjuga tion 
endings (e.g. stessimo ‘that we stayed (subj.)’ and stette ‘(s)he stayed’). This is 
captured in the map, where the verb is located halfway between the 1st and 2nd 
conjugation areas.  

6. Conclusion and future work  
The paper offered a series of snapshots of the dynamic behaviour of a 

Kohonen map of the mental lexicon taken in different phases of acquisition of 
the Italian verb system. The snapshots consistently portray the emergence of 
global ordering constraints on memory traces of inflected verb forms, at 
different levels of linguistic granularity.   

Our simulations highlight not only morphologically natural classes of input 
patterns (reminiscent of the hierarchical clustering of perceptron input units on 
the basis of their hidden layer activation values) and selective specialisation of 
neurons and prototype vector dimensions in the map, but also other non-trivial 
aspects of memory organisation. We observe that the number of neighbouring 
units involved in the memorisation of a specific morphological class is 
proportional to both type frequency of the class and token frequency of its 
members. Token frequency also affects the entrenchment of memory areas 
devoted to storing individual forms, so that highly frequent forms are 
memorised in full, rather than forming part of a morphological cluster.   

In our view, the solid neuro-physiological basis of SOMs’ processing 
strategies and the considerable psycho-linguistic and linguistic evidence in 
favour of global constraints in morphology learning make the suggested 
approach an interesting medium-scale experimental framework, mediating 
between small-scale neurological structures and large -scale linguistic evidence. 



In the end, it would not be surprising if more in-depth computational analyses 
of this sort will give strong indications that associative models of the 
morphological lexicon are compatible with a “realistic” interpretation of 
morpheme-based decomposition and access of inflected forms in the mental 
lexicon. According to this view, morphemes appear to play a truly active role in 
lexical indexing, as they acquire an increasingly dominant position as local 
attractors through learning. This may sound trivial to the psycholinguistic 
community. Nonetheless, only very few computer simulations of morphology 
learning have so far laid emphasis on the importance of incrementally acquiring 
structure from morphological data (as opposed – say – to simply memorising 
more and more input examples) and on the role of acquired structure in lexical 
organisation. Most notably for our present concerns, the global ordering 
constraints imposed by morphological structure in a SOM are the by-product of 
purely local strategies of memory access, process ing and updating, which are 
entirely compatible with associative models of morphological learning. After 
all, the learning child is not a linguist and it has no privileged perspective on all 
relevant data. It would nonetheless be somewhat reassur ing to observe that its 
generalisations and ordering constraints come very close to a linguist’s ontol-
ogy.  

The present work also shows some possible limitations of classical SOM 
architectures. The propensity of SOMs to fully memorise input data only at late 
learning stages (in the fine -tuning phase) is not fully justified in our context. 
Likewise, the hypothesis of a two-staged learning process, marked by a sharp 
discontinuity at the level of kernel radius length, has little psycholinguistic 
support. Furthermore, multiple classifica tions are only minimally supported by 
SOMs. As we saw, a paradigm-based organisation actually replaces the original 
lexical structure. This is not entirely desirable when we deal with complex 
language tasks. In order to tackle these potential problems, the following 
changes are currently be ing implemented:  

  
•  endogenous modification of radius length as a function of the 

local distance between the best matching prototype vector and the cur -
rent stimulus; the smaller the distance the smaller the effect of adaptive 
updating on neighbouring vectors  

 



•  adaptive vector -distance function; as a neuron becomes more 
sensitive to an input pattern, it also develops a sensitivity to specific 
input dimensions; differential sensitivity, however, is presently not 
taken into account when measuring the distance between two vectors; 
we suggest weighting vector dimensions, so that distances on some 
dimensions are valued higher than distances on other dimensions 

 
•  “self-feeding” SOMs for multiple classification tasks; when an 

incoming stimulus has been matched by the winner unit only partially, 
the non matching part of the same stimulus is fed back to the map; this 
is intended to allow “recognition” of more than one morpheme within 
the same input form 

 
•  more natural input representations, addressing the issue of time 

and space-invariant features in character sequences.  
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